Project description:Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.
Project description:Photocaging facilitates non-invasive and precise spatio-temporal control over the release of biologically relevant small- and macro-molecules using light. However, sub-cellular organelles are dispersed in cells in a manner that renders selective light-irradiation of a complete organelle impractical. Organelle-specific photocages could provide a powerful method for releasing bioactive molecules in sub-cellular locations. Herein, we report a general post-synthetic method for the chemical functionalization and further conjugation of meso-methyl BODIPY photocages and the synthesis of endoplasmic reticulum (ER)-, lysosome-, and mitochondria-targeted derivatives. We also demonstrate that 2,4-dinitrophenol, a mitochondrial uncoupler, and puromycin, a protein biosynthesis inhibitor, can be selectively photoreleased in mitochondria and ER, respectively, in live cells by using visible light. Additionally, photocaging is shown to lead to higher efficacy of the released molecules, probably owing to a localized and abrupt release.
Project description:Positive-stranded RNA viruses extensively remodel host cell architecture to enable viral replication. Here, we examined the poorly understood formation of specialized membrane compartments that are critical sites for the synthesis of the viral genome. We show that the replication compartments (RCs) of enteroviruses are created through novel membrane contact sites that recruit host lipid droplets (LDs) to the RCs. Viral proteins tether the RCs to the LDs and interact with the host lipolysis machinery to enable transfer of fatty acids from LDs, thereby providing lipids essential for RC biogenesis. Inhibiting the formation of the membrane contact sites between LDs and RCs or inhibition of the lipolysis pathway disrupts RC biogenesis and enterovirus replication. Our data illuminate mechanistic and functional aspects of organelle remodeling in viral infection and establish that pharmacological targeting of contact sites linking viral and host compartments is a potential strategy for antiviral development.
Project description:We have combined sucrose density gradient subcellular fractionation with quantitative, tandem-mass-spectrometry-based shotgun proteomics to investigate spatial distributions of proteins in MCF-7 breast cancer cells. Emphasis was placed on four major organellar compartments: cytosol, plasma membrane, endoplasmic reticulum, and mitochondrion. Two-thousand one-hundred eighty-four proteins were securely identified. Four-hundred eighty-one proteins (22.0% of total proteins identified) were found in unique sucrose gradient fractions, suggesting they may have unique subcellular locations. 454 proteins (20.8%) were found to be ubiquitously distributed. The remaining 1249 proteins (57.2%) were consistent with intermediate distribution over multiple, but not all, subcellular locations. Ninety-four proteins implicated in breast cancer and 478 other proteins which share the same five major cellular biological processes with a majority of the breast cancer proteins were observed in 334 and 1223 subcellular locations, respectively. The data obtained is used to evaluate the possibility of defining more exact sets of subcellular organelles, the completeness of current descriptions of spatial distribution of cellular proteins, the importance of multiple subcellular locations for proteins in functional processes, the subcellular distribution of proteins related to breast cancer, and the possibility of using these methods for dynamic spatio/temporal studies of function/regulation in MCF-7 breast cancer cells.
Project description:Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP), an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi)-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis.
Project description:Defining the subcellular distribution of all human proteins and its remodeling across cellular states remains a central goal in cell biology. Here, we present a high-resolution strategy to map subcellular organization using organelle immuno-capture coupled to mass spectrometry. We apply this workflow to a cell-wide collection of membranous and membrane-less compartments. A graph-based analysis reveals the subcellular localization of over 7,600 proteins, defines spatial networks, and uncovers interconnections between cellular compartments. Our approach can be deployed to comprehensively profile proteome remodeling during cellular perturbation. By characterizing the cellular landscape following hCoV-OC43 viral infection, we discover that many proteins are regulated by changes in their spatial distribution rather than by changes in abundance. Our results establish that proteome-wide analysis of subcellular remodeling provides unique insights for the elucidation of cellular responses, uncovering an essential role for ferroptosis in OC43 infection. Our dataset can be explored at organelles.czbiohub.org.
Project description:Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP-A, VAP-B, and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP-A, VAP-B, and MOSPD2 contain an MSP domain, which binds a motif named FFAT (two phenylalanines in an acidic tract). In this study, we identified a non-conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non-conventional FFAT motifs (named Phospho-FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho-FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho-FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER-endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter-organelle contacts.
Project description:The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the UPR. Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest a component of UPR induction in arv1? strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, C/EBP homologous protein (CHOP) and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis resulting in a disruption of ER integrity, one consequence of which is induction of the UPR. Yeast strains were grown to mid-logarithmic stage (A600=0.5-0.6) for RNA extraction and hybridization on Ye6100 or S98 Affymetrix gene chips. The control array (sample name C) was carried out in duplicate. The ARV1 mutant array (sample name A) was carried out in triplicate. Both ARV1 mutants Ye6100 arrays were compared to the same control Ye6100 array. Strains represent different isolates of the same genotype, mating type and genetic background (w303). Sturley lab collection (SCY) strains include SCY328 and SCY2004 for controls and SCY820 and SCY840 for ARV1 mutants.
Project description:Organelles are physically connected in membrane contact sites. The endoplasmic reticulum possesses three major receptors, VAP-A, VAP-B and MOSPD2, which interact with proteins at the surface of other organelles to build contacts. VAP-A, VAP-B and MOSPD2 contain an MSP domain, which binds a motif named FFAT [two phenylalanines in an acidic tract]. In this study, we identified a non-conventional FFAT motif where a conserved acidic residue is replaced by a serine/threonine. We show that phosphorylation of this serine/threonine is critical for non-conventional FFAT motifs (named Phospho-FFAT) to be recognized by the MSP domain. Moreover, structural analyses of the MSP domain alone or in complex with conventional and Phospho-FFAT peptides revealed new mechanisms of interaction. Based on these new insights, we produced a novel prediction algorithm, which expands the repertoire of candidate proteins with a Phospho-FFAT that are able to create membrane contact sites. Using a prototypical tethering complex made by STARD3 and VAP, we showed that phosphorylation is instrumental for the formation of ER-endosome contacts, and their sterol transfer function. This study reveals that phosphorylation acts as a general switch for inter-organelle contacts.
Project description:The dose-dependent bioactivity of small molecules on cells is a crucial factor in drug discovery and personalized medicine. Although small-molecule microarrays are a promising platform for miniaturized screening, it has been a challenge to use them to obtain quantitative dose-response curves in vitro, especially for lipophilic compounds. Here we establish a small-molecule microarray assay capable of controlling the dosage of small lipophilic molecules delivered to cells by varying the sub-cellular volumes of surface supported lipid micro- and nanostructure arrays fabricated with nanointaglio. Features with sub-cellular lateral dimensions were found necessary to obtain normal cell adhesion with HeLa cells. The volumes of the lipophilic drug-containing nanostructures were determined using a fluorescence microscope calibrated by atomic-force microscopy. We used the surface supported lipid volume information to obtain EC-50 values for the response of HeLa cells to three FDA-approved lipophilic anticancer drugs, docetaxel, imiquimod and triethylenemelamine, which were found to be significantly different from neat lipid controls. No significant toxicity was observed on the control cells surrounding the drug/lipid patterns, indicating lack of interference or leakage from the arrays. Comparison of the microarray data to dose-response curves for the same drugs delivered liposomally from solution revealed quantitative differences in the efficacy values, which we explain in terms of cell-adhesion playing a more important role in the surface-based assay. The assay should be scalable to a density of at least 10,000 dose response curves on the area of a standard microtiter plate.