Project description:BACKGROUND:Factor V (FV) B-domain contains an acidic region (FV-AR2) and a basic region (FV-BR), which interact with each other and maintain FV in a procofactor form; removal of either region via deletion/proteolysis results in an active FVa molecule. Tissue factor pathway inhibitor type-1 (TFPI) and type-2 (TFPI2) each contain a C-terminus basic segment homologous to FV-BR; this region in TFPI (and predicted in TFPI2) binds to FV-AR2 in platelet FVa (that lacks FV-BR) with high affinity and inhibits FVa function. OBJECTIVES:To understand molecular interactions between FV-AR2 with FV-BR, TFPI-BR and TFPI2-BR. METHODS:Circular dichroism (CD) and molecular modeling approaches. RESULTS AND CONCLUSIONS:CD experiments reveal the presence of ?20% helical content in both FV-AR2 and FV-BR but each lacks beta-sheet. Predicted structures of FV-AR2 and FV-BR, obtained using threading (I-TASSER), are consistent with the CD data and have compact folds with hydrophobic residues in the interior and charged residues on the surface. Scores from QMEAN and ModFOLD servers indicate a very high probability for each structure to be native. Predicted models of Kunitz domain-3 of TFPI and TFPI2 each with C-terminal basic tail are consistent with known homologous structures. Docking experiments using ClusPro indicate that the acidic groove of FV-AR2 has high shape complementarity to accommodate the conserved basic residues in FV-BR (1002-RKKKK-1006), TFPI-BR (256-RKRKK-260) or TFPI2-BR (191-KKKKK-195). Further, similar electrostatic interactions occur in each case. These models, in the absence of experimentally determined structures, provide a guiding point for proper mutagenesis studies in FV, TFPI and TFPI2.
Project description:The splicing factor SYNCRIP (hnRNP Q) is involved in viral replication, neural morphogenesis, modulation of circadian oscillation, and the regulation of the cytidine deaminase APOBEC1. It consists of three globular RNA-recognition motifs (RRM) domains flanked by an N-terminal acid-rich acidic sequence segment domain (AcD12-97 ) and a C-terminal domain containing an arginine-glycine-rich sequence motif (RGG/RXG box), which are located near to the N- and C-terminals, respectively. The acid-rich sequence segment is unique to SYNCRIP and the closely related protein hnRNP R, and is involved in interactions with APOBEC1. Here, we show that while AcD12-97 does not form a globular domain, structure-based annotation identified a self-folding globular domain with an all α-helix architecture, AcD24-107 . The NMR structure of AcD24-107 is fundamentally different from previously reported AcD molecular models. In addition to negatively charged surface areas, it contains a large hydrophobic cavity and a positively charged surface area as potential epitopes for intermolecular interactions.
Project description:Coagulation factor XII is a serine protease that is important for kinin generation and blood coagulation, cleaving the substrates plasma kallikrein and FXI.To investigate FXII zymogen activation and substrate recognition by determining the crystal structure of the FXII protease domain.A series of recombinant FXII protease constructs were characterized by measurement of cleavage of chromogenic peptide and plasma kallikrein protein substrates. This revealed that the FXII protease construct spanning the light chain has unexpectedly weak proteolytic activity compared to ?-FXIIa, which has an additional nine amino acid remnant of the heavy chain present. Consistent with these data, the crystal structure of the light chain protease reveals a zymogen conformation for active site residues Gly193 and Ser195, where the oxyanion hole is absent. The Asp194 side chain salt bridge to Arg73 constitutes an atypical conformation of the 70-loop. In one crystal form, the S1 pocket loops are partially flexible, which is typical of a zymogen. In a second crystal form of the deglycosylated light chain, the S1 pocket loops are ordered, and a short ?-helix in the 180-loop of the structure results in an enlarged and distorted S1 pocket with a buried conformation of Asp189, which is critical for P1 Arg substrate recognition. The FXII structures define patches of negative charge surrounding the active site cleft that may be critical for interactions with inhibitors and substrates.These data provide the first structural basis for understanding FXII substrate recognition and zymogen activation.
Project description:Factor VII (FVII) consists of an N-terminal gamma-carboxyglutamic acid domain followed by two epidermal growth factor-like (EGF1 and EGF2) domains and the C-terminal protease domain. Activation of FVII results in a two-chain FVIIa molecule consisting of a light chain (Gla-EGF1-EGF2 domains) and a heavy chain (protease domain) held together by a single disulfide bond. During coagulation, the complex of tissue factor (TF, a transmembrane glycoprotein) and FVIIa activates factor IX (FIX) and factor X (FX). FVIIa is structurally "zymogen-like" and when bound to TF, it is more "active enzyme-like." FIX and FX share structural homology with FVII. Three structural biology aspects of FVIIa/TF are presented in this review. One, regions in soluble TF (sTF) that interact with FVIIa as well as mapping of Ca2+, Mg2+, Na+ and Zn2+ sites in FVIIa and their functions; two, modeled interactive regions of Gla and EGF1 domains of FXa and FIXa with FVIIa/sTF; and three, incompletely formed oxyanion hole in FVIIa/sTF and its induction by substrate/inhibitor. Finally, an overview of the recognition elements in TF pathway inhibitor is provided.
Project description:BackgroundHemophilia A is caused by heterogeneous mutations in F8. Coagulation factor VIII (FVIII), the product of F8, is composed of multiple domains designated A1-A2-B-A3-C1-C2. FVIII is known to interact with diverse proteins, and this characteristic may be important for hemostasis. However, little is known about domain-specific functions or their specific binding partners.MethodsTo determine F8 domain-specific functions during blood coagulation, the FVIII domains A1, A2, A3, and C were cloned from Hep3B hepatocytes. Domain-specific recombinant polypeptides were glutathione S-transferase (GST)- or polyhistidine (His)-tagged, over-expressed in bacteria, and purified by specific affinity chromatography.ResultsRecombinant polypeptides of predicted sizes were obtained. The GST-tagged A2 polypeptide interacted with coagulation factor IX, which is known to bind the A2 domain of activated FVIII.ConclusionRecombinant, domain-specific polypeptides are useful tools to study the domain-specific functions of FVIII during the coagulation process, and they may be used for production of domain-specific antibodies.
Project description:Factor VIII (fVIII) is a serum protein in the coagulation cascade that nucleates the assembly of a membrane-bound protease complex on the surface of activated platelets at the site of a vascular injury. Hemophilia A is caused by a variety of mutations in the factor VIII gene and typically requires replacement therapy with purified protein. We have determined the structure of a fully active, recombinant form of factor VIII (r-fVIII), which consists of a heterodimer of peptides, respectively containing the A1-A2 and A3-C1-C2 domains. The structure permits unambiguous modeling of the relative orientations of the 5 domains of r-fVIII. Comparison of the structures of fVIII, fV, and ceruloplasmin indicates that the location of bound metal ions and of glycosylation, both of which are critical for domain stabilization and association, overlap at some positions but have diverged at others.
Project description:Factor VIII (FVIII) functions as a cofactor of FIXa for FX activation in the intrinsic tenase complex. The 1811-1818 region in the FVIII A3 domain was observed to contribute to FIXa binding, and the K1813A/K1818A mutant increased the binding affinity for FIXa. The current study aims to identify mutated FVIII protein(s) that increase FVIIIa cofactor activity in the 1811-1818 region. FVIII mutants with K1813A, K1818A, and K1813A/K1818A were expressed in baby hamster kidney cells and were followed by assessments using purified and global coagulation assays for mouse models with hemophilia A (HA). A surface plasmon resonance-based assay revealed that the Kd value of FVIII-K1813A for FIXa interaction was lower than that of the wild-type (WT) (3.9±0.7/6.3±0.3 nM). However, the Km value of FVIII-K1813A for FIXa on tenase activity was comparable with that of the WT, whereas the kcat of this mutant was significantly greater than that of the WT. Thrombin-catalyzed FVIII-K1813A activation was ∼1.3-fold more enhanced than that of the WT, and the spontaneous decay of activated FVIII-K1813A was ∼2.5-fold slower than that of WT. The heat stability assay revealed that the decay rate of FVIII-K1813A was ∼2.5-fold slower than that of WT. Thrombin generation assay and rotational thromboelastometry using blood samples from patients with HA demonstrated that the addition of FVIII-K1813A (0.5 nM) exhibited a coagulation potential compatible with that of WT (1 nM). In the tail clip assay of HA mice, FVIII-K1813A showed a two- to fourfold higher hemostatic potential than that of the WT. FVIII-K1813A, with higher a FIXa binding affinity, enhances the global coagulation potential because of the stability of FVIII/FVIIIa molecules.
Project description:Essentials Membrane-binding GLA domains of coagulation factors are essential for proper clot formation. Factor X (FX) is specific to phosphatidylserine (PS) lipids through unknown atomic-level interactions. Molecular dynamics simulations were used to develop the first membrane-bound model of FX-GLA. PS binding modes of FX-GLA were described, and potential PS-specific binding sites identified. SUMMARY:Background Factor X (FX) binds to cell membranes in a highly phospholipid-dependent manner and, in complex with tissue factor and factor VIIa (FVIIa), initiates the clotting cascade. Experimental information concerning the membrane-bound structure of FX with atomic resolution has remained elusive because of the fluid nature of cellular membranes. FX is known to bind preferentially to phosphatidylserine (PS). Objectives To develop the first membrane-bound model of the FX-GLA domain to PS at atomic level, and to identify PS-specific binding sites of the FX-GLA domain. Methods Molecular dynamics (MD) simulations were performed to develop an atomic-level model for the FX-GLA domain bound to PS bilayers. We utilized a membrane representation with enhanced lipid mobility, termed the highly mobile membrane mimetic (HMMM), permitting spontaneous membrane binding and insertion by FX-GLA in multiple 100-ns simulations. In 14 independent simulations, FX-GLA bound spontaneously to the membrane. The resulting membrane-bound models were converted from HMMM to conventional membrane and simulated for an additional 100 ns. Results The final membrane-bound FX-GLA model allowed for detailed characterization of the orientation, insertion depth and lipid interactions of the domain, providing insight into the molecular basis of its PS specificity. All binding simulations converged to the same configuration despite differing initial orientations. Conclusions Analysis of interactions between residues in FX-GLA and lipid-charged groups allowed for potential PS-specific binding sites to be identified. This new structural and dynamic information provides an additional step towards a full understanding of the role of atomic-level lipid-protein interactions in regulating the critical and complex clotting cascade.
Project description:Factor VIII (FVIII, other clotting factors are named similarly) is a glycoprotein that circulates in the plasma bound to von Willebrand factor. During the blood coagulation cascade, activated FVIII (FVIIIa) binds to FIXa and activates FX in the presence of calcium ions and phospholipid membranes. The C1 and C2 domains mediate membrane binding that is essential for activation of the FVIIIa-FIXa complex. Here, (1)H, (13)C, and (15)N backbone chemical shift assignments are reported for the C2 domain of FVIII, including assignments for the residues in solvent-exposed loops. The NMR resonance assignments, along with further structural studies of membrane-bound FVIII, will advance understanding of blood-clotting protein interactions.
Project description:Factor Xa, the converting enzyme of prothrombin to thrombin, has emerged as an alternative (to thrombin) target for drug discovery for thromboembolic diseases. An inhibitor has been synthesized and the crystal structure of the complex between Des[1-44] factor Xa and the inhibitor has been determined by crystallographic methods in two different crystal forms to 2.3- and 2.4-A resolution. The racemic mixture of inhibitor FX-2212, (2RS)-(3'-amidino-3-biphenylyl)-5-(4-pyridylamino)pentanoic acid, inhibits factor Xa activity by 50% at 272 nM in vitro. The S-isomer of FX-2212 (FX-2212a) was found to bind to the active site of factor Xa in both crystal forms. The biphenylamidine of FX-2212a occupies the S1-pocket, and the pyridine ring makes hydrophobic interactions with the factor Xa aryl-binding site. Several water molecules meditate inhibitor binding to residues in the active site. In contrast to the earlier crystal structures of factor Xa, such as those of apo-Des[1-45] factor Xa and Des[1-44] factor Xa in complex with a naphthyl inhibitor DX-9065a, two epidermal growth factor-like domains of factor Xa are well ordered in both our crystal forms as well as the region between the two domains, which recently was found to be the binding site of the effector cell protease receptor-1. This structure provides a basis for designing next generation inhibitors of factor Xa.