Project description:Structural transitions in viral capsids play a critical role in the virus life cycle, including assembly, disassembly, and release of the packaged nucleic acid. Cowpea chlorotic mottle virus (CCMV) undergoes a well-studied reversible structural expansion in vitro in which the capsid expands by 10%. The swollen form of the particle can be completely disassembled by increasing the salt concentration to 1 M. Remarkably, a single-residue mutant of the CCMV N-terminal arm, K42R, is not susceptible to dissociation in high salt (salt-stable CCMV [SS-CCMV]) and retains 70% of wild-type infectivity. We present the combined structural and biophysical basis for the chemical stability and viability of the SS-CCMV particles. A 2.7-A resolution crystal structure of the SS-CCMV capsid shows an addition of 660 new intersubunit interactions per particle at the center of the 20 hexameric capsomeres, which are a direct result of the K42R mutation. Protease-based mapping experiments of intact particles demonstrate that both the swollen and closed forms of the wild-type and SS-CCMV particles have highly dynamic N-terminal regions, yet the SS-CCMV particles are more resistant to degradation. Thus, the increase in SS-CCMV particle stability is a result of concentrated tethering of subunits at a local symmetry interface (i.e., quasi-sixfold axes) that does not interfere with the function of other key symmetry interfaces (i.e., fivefold, twofold, quasi-threefold axes). The result is a particle that is still dynamic but insensitive to high salt due to a new series of bonds that are resistant to high ionic strength and preserve the overall particle structure.
Project description:Protein capsids are a widespread form of compartmentalisation in nature. Icosahedral symmetry is ubiquitous in capsids derived from spherical viruses, as this geometry maximises the internal volume that can be enclosed within. Despite the strong preference for icosahedral symmetry, we show that simple point mutations in a virus-like capsid can drive the assembly of novel symmetry-reduced structures. Starting with the encapsulin from Myxococcus xanthus, a 180-mer bacterial capsid that adopts the well-studied viral HK97 fold, we use mass photometry and native charge detection mass spectrometry to identify a triple histidine point mutant that forms smaller dimorphic assemblies. Using cryo-EM, we determine the structures of a precedented 60-mer icosahedral assembly and an unprecedented 36-mer tetrahedron that features significant geometric rearrangements around a novel interaction surface between capsid protomers. We subsequently find that the tetrahedral assembly can be generated by triple point mutation to various amino acids, and that even a single histidine point mutation is sufficient to form tetrahedra. These findings represent the first example of tetrahedral geometry across all characterised encapsulins, HK97-like capsids, or indeed any virus-derived capsids reported in the Protein Data Bank, revealing the surprising plasticity of capsid self-assembly that can be accessed through minimal changes in protein sequence.
Project description:Many icosahedral viruses undergo large-scale conformational transitions between icosahedrally symmetric conformations during their life cycles. However, whether icosahedral symmetry is maintained along the transition pathways for this process is unknown. By employing a simplified and directed structure-based potential we compute an ensemble of transition pathways for the maturation transition of bacteriophage HK97. We observe localized symmetry-breaking events, but find that the large-scale displacements are dominated by icosahedrally symmetric deformation modes. We find that all pathways obey a common mechanism characterized by formation of pentameric contacts early in the transition.
Project description:Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.Graphical Abstract.
Project description:Low-temperature (1.4 K), single-molecule fluorescence-excitation spectra have been recorded for individual reaction center-light-harvesting 1 complexes from Rhodopseudomonas palustris and the PufX(-) strain of Rhodobacter sphaeroides. More than 80% of the complexes from Rb. sphaeroides show only broad absorption bands, whereas nearly all of the complexes from Rps. palustris also have a narrow line at the low-energy end of their spectrum. We describe how the presence of this narrow feature indicates the presence of a gap in the electronic structure of the light-harvesting 1 complex from Rps. palustris, which provides strong support for the physical gap that was previously modeled in its x-ray crystal structure.
Project description:In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components.
Project description:We construct nanotubes using native protein structures and their native associations from structural databases. The construction is based on a shape-guided symmetric self-assembly concept. Our strategy involves fusing judiciously-selected oligomerization domains via peptide linkers. Linkers are inherently flexible, hence their choice is critical: they should position the domains in three-dimensional space in the desired orientation while retaining their own natural conformational tendencies; however, at the same time, retain the construct stability. Here we outline a design scheme which accounts for linker flexibility considerations, and present two examples. The first is HIV-1 capsid protein, which in vitro self-assembles into nanotubes and conical capsids, and its linker exists as a short flexible loop. The second involves novel nanotubes construction based on antimicrobial homodimer Magainin 2, employing linkers of distinct lengths and flexibility levels. Our strategy utilizes the abundance of unique shapes and sizes of proteins and their building blocks which can assemble into a vast number of combinations, and consequently, nanotubes of distinct morphologies and diameters. Computational design and assessment methodologies can help reduce the number of candidates for experimental validation. This is an invited paper for a special issue on protein dynamics, here focusing on flexibility in nanotube design based on protein building blocks.
Project description:The detailed molecular interactions between native HIV-1 capsid protein (CA) hexamers that shield the viral genome and proteins have been elusive. We report crystal structures describing interactions between CA monomers related by sixfold symmetry within hexamers (intrahexamer) and threefold and twofold symmetry between neighboring hexamers (interhexamer). The structures describe how CA builds hexagonal lattices, the foundation of mature capsids. Lattice structure depends on an adaptable hydration layer modulating interactions among CA molecules. Disruption of this layer alters interhexamer interfaces, highlighting an inherent structural variability. A CA-targeting antiviral affects capsid stability by binding across CA molecules and subtly altering interhexamer interfaces remote to the ligand-binding site. Inherent structural plasticity, hydration layer rearrangement, and effector binding affect capsid stability and have functional implications for the retroviral life cycle.