Project description:Our understanding of heart failure (HF) has been provided by indirect surrogates, such as post-mortem histology, cardiovascular imaging, and molecular characterisation in vivo and in vitro, rather than directly in pre-mortem human cardiac tissue. Using our heart bank of pre-mortem hearts procured according to the most stringent protocols, we examined ischemic (ICM) and dilated cardiomyopathy (DCM) -- the most common causes of HF and leading causes of cardiac transplantation1. We performed unbiased, comprehensive, paired proteomic and metabolomic analysis of 51 left ventricular (LV) samples from 44 cryopreserved pre-mortem human ICM and DCM hearts, including age-matched, healthy, histopathologically-normal donor controls of both genders for comparison. Data integration via pathway and correlation network analysis revealed overlapping and divergent disease pathways in ICM and DCM, and, strikingly, precise sex-specific differences within each disease that unveil the interaction of gender with HF. Identified core functional nodes in each disease may serve as novel therapeutic targets, and we provide all proteomic and metabolomic results via an interactive online repository (https://mengboli.shinyapps.io/heartomics/) as a publicly available resource.
Project description:Left ventricular myocardium was snap-frozen at time of cardiac transplantation from patients with advanced idiopathic or ischemic cardiomyopathy, or at time of harvest from unused donor heart that serve as a nonfailing control. No subjects received mechanical support devices. Experiment Overall Design: All arrays were normalized together using RMA (www.Bioconductor.org)
Project description:End stage heart failure due to ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) have similar characteristics, enlargement of the ventricles, relatively thin-walled ventricle, which leads to a limited contraction force and blood loading. Nevertheless, the response for present therapeutics is very variable and the prognosis is still very bad for ICM and DCM in general. Thus, the ability to differentiate the etiologies of heart failure based structural and physiological changes of the heart would be a step forward to enhance the specificity and the success of given therapy.
Project description:Left ventricular myocardium was snap-frozen at time of cardiac transplantation from patients with advanced idiopathic or ischemic cardiomyopathy, or at time of harvest from unused donor heart that serve as a nonfailing control. No subjects received mechanical support devices. Keywords: disease state analysis (case:control)
Project description:BACKGROUND:Ischemic heart disease (IHD) is a common cardiovascular disorder associated with inadequate blood supply to the myocardium. Chronic coronary ischemia leads to ischemic cardiomyopathy (ICM). Despite their rising prevalence and morbidity, few studies have discussed the lipids alterations in these patients. METHODS:In this cross-sectional study, we analyzed serum lipids profile in IHD and ICM patients using a lipidomics approach. Consecutive consenting patients admitted to the hospital for IHD and ICM were enrolled. Serum samples were obtained after overnight fasting. Non-targeted metabolomics was applied to demonstrate lipids metabolic profile in control, IHD and ICM patients. RESULTS:A total of 63 and 62 lipids were detected in negative and positive ion mode respectively. Among them, 16:0 Lyso PI, 18:1 Lyso PI in negative ion mode, and 19:0 Lyso PC, 12:0 SM d18:1/12:0, 15:0 Lyso PC, 17:0 PC, 18:1-18:0 PC in positive ion mode were significantly altered both in IHD and ICM as compared to control. 13:0 Lyso PI, 18:0 Lyso PI, 16:0 PE, 14:0 PC DMPC, 16:0 ceramide, 18:0 ceramide in negative ion mode, and 17:0 PE, 19:0 PC, 14:0 Lyso PC, 20:0 Lyso PC, 18:0 PC DSPC, 18:0-22:6 PC in positive ion mode were significantly altered only in ICM as compared to IHD and control. CONCLUSION:Using non-targeted lipidomics profiling, we have successfully identified a group of circulating lipids that were significantly altered in IHD and ICM. The lipids metabolic signatures shed light on potential new biomarkers and therapeutics for preventing and treating ICM.
Project description:Heart failure (HF) is a worldwide pandemic with an unacceptable high level of morbidity and mortality. Understanding the different pathophysiological mechanisms will contribute to prevention and individualized therapy of HF. We established mouse models for ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) by inducing myocardial infarction (MI) and Coxsackievirus B3 infection, respectively. Isobaric tags for relative and absolute quantitation and liquid chromatography coupled with tandem mass spectrometry technology was used to identify the protein expression profiles in control and failing hearts. A total of 1,638 proteins were identified and compared in this proteomics analysis. Among them, 286 proteins were differently expressed. Gene ontology, KEGG pathway and ingenuity pathway analysis was performed to systematically assess the potential connections of the differentially expressed proteins to biological functions. Compared with control group, the differentially expressed proteins derived from the hearts of ICM and DCM mice were partially similar and mainly modulated in oxidative phosphorylation, metabolism and protein folding pathways. Moreover, difference still existed, the differentially expressed proteins between DCM and ICM hearts were significantly modulated in oxidative phosphorylation, metabolic and AMPK signaling pathways. Confirmatory western bolt analysis demonstrated that SDHB was down-regulated in both ICM and DCM hearts, while UQCRQ, GLUT4 and adiponectin were up-regulated in ICM hearts. Adenosine triphosphate (ATP) concentration significantly decreased in both DCM and ICM hearts. The protein expression of phospho-AMPKα decreased significantly in DCM hearts, but increased in ICM. In summary, oxidative phosphorylation, cardiac metabolism, and protein folding play critical roles in the pathogenesis of HF. The diverse changes in protein expression profiles between failing hearts induced by either MI or CVB3 infection demonstrated the heterogeneity of HF. Understanding the differences in proteome profiles could offer more precise therapeutic options for HF.