Microarray study to understand acquired resistance to EGFR-targeted therapy in lung cancer
Ontology highlight
ABSTRACT: Activating mutations of EGFR have been characterized as important mechanisms for carcinogenesis in a subset of EGFR-dependent non-small cell lung cancers (NSCLC). EGFR tyrosine kinase inhibitors (TKI), such as erlotinib and gefitinib, have dramatic clinical effects on EGFR-addicted lung cancers and are used as first-line therapy for EGFR-mutant tumors. However, eventually all tumors acquire secondary resistance to the drugs and progress. We established a model to better understand mechanisms of acquired resistance. NCI- HCC827 cells are EGFR-mutant and highly erlotinib-sensitive. In this study we exposed HCC827 cells to increasing concentrations of erlotinib and two highly erlotinib-resistant subclones were developed (ER3 and T15-2). In these subclones no acquired alterations of EGFR or MET were found. We hereby performed a gene expression microarray studies to understand changes that might explain mechanisms of resistance. Through these studies we demonstrated in one resistant clone (ER3) overexpression of AXL, a tyrosine kinase implicated in imatinib and lapatinib resistance. Gene expression profilings were measured in NSCLC cell line HCC827 and two erlotinib-resistant HCC827-originated sublines ER3 and T15-2.
ORGANISM(S): Homo sapiens
SUBMITTER: Zhang Zhenfeng
PROVIDER: S-ECPF-GEOD-38310 | biostudies-other |
REPOSITORIES: biostudies-other
ACCESS DATA