Project description:bulk breast tumor RNA from patient; Abstract: Sporadic basal-like cancers (BLC) are a distinct class of human breast cancers that are phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient tumors, most BLC lack markers of a normal inactive X chromosome (Xi). Duplication of the active X chromosome and loss of Xi characterized almost half of BLC cases tested. Others contained biparental but nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These abnormalities did not lead to a global increase in X chromosome transcription but were associated with overexpression of a small subset of X chromosomal genes. Other, equally aneuploid, but non-BLC rarely displayed these X chromosome abnormalities. These results suggest that X chromosome abnormalities contribute to the pathogenesis of BLC, both inherited and sporadic. total 62 sample incudes 43 tumor, 7 normal breast and 12 normal organelle Experiment Overall Design: compare expression of tumor to normal breast tissue
Project description:Multiple genome-wide microarrays have been used to analyse the transcriptomes of immunomagnetically separated normal human luminal epithelial and myoepithelial cells, as well as primary malignant breast epithelial cells.
Project description:Analysis of 143 completely histologically-normal breast tissues resulted in the identification of a “malignancy risk” gene signature that may serve as a marker of subsequent risk of breast cancer development. Experiment Overall Design: RNA was extracted from microdissected frozen breast tissues for gene array analysis
Project description:Brain metastasis is one of the most feared complications of cancer and the most common intracranial malignancy in adults. Its underlying mechanisms remain unknown. From breast cancer patients with metastatic disease we isolated cell populations that aggressively colonize the brain. Transcriptomic analysis of these cells yielded overlapping gene sets whose expression is selectively associated with brain metastasis. The expression of seventeen of these genes in primary breast tumors is associated with brain relapse in breast cancer patients. Some of these genes are also associated with metastasis to lung but not to liver, bone or lymph nodes, providing a molecular basis for the long-observed link between brain and lung metastasis. Among the functionally validated brain metastasis genes, the cyclooxigenase COX-2, the EGFR ligand HB-EGF, and the brain-specific 2-6 sialyltransferase ST6GALNAC5 mediate cancer cell passage through the blood-brain barrier. Other brain metastasis genes encode inflammatory factors and brain-specific proteolytic regulators, suggesting a multifaceted program for breast cancer colonization of the brain. Experiment Overall Design: 204 primary tumors from breast cancer patients with known site of relapse were studied, focussing on brain relapse versus other relapse. Identified genes were validated in this cohort.
Project description:Background To identify the spectrum of malignant attributes maintained outside the host environment, we have compared global gene expression in primary breast tumors and matched short-term epithelial cultures. Results In contrast to immortal cell lines, a characteristic 'limited proliferation' phenotype was observed, which included over expressed genes associated with the TGFbeta signal transduction pathway, such as SPARC, LOXL1, RUNX1, and DAPK1. Underlying this profile was the conspicuous absence of hTERT expression and telomerase activity, a significant increase in TGFbeta receptor2, its cognate ligand, and the CDK inhibitor, p21CIP1/WAF1. Concurrently, tumor tissue and primary cultures displayed low transcript levels of proliferation-related genes, such as, TOP2A, ANKT, RAD51, UBE2C, CENPA, RRM2, and PLK. Conclusions Our data demonstrate that commonly used immortal cell lines do not reflect some aspects of tumor biology as closely as primary tumor cell cultures. The gene expression profile of malignant tissue, which is uniquely retained by cells cultured on solid substrates, could facilitate the development and testing of novel molecular targets for breast cancer.
Project description:Gene expression signatures encompassing dozens to hundreds of genes have been associated with many important parameters of cancer, but mechanisms of their control are largely unknown. Here we present a method based on genetic linkage that can prospectively identify functional regulators driving large-scale transcriptional signatures in cancer. Using this method we show that the wound response signature, a poor-prognosis expression pattern of 512 genes in breast cancer, is induced by coordinate amplifications of MYC and CSN5 (also known as JAB1 or COPS5). This information enabled experimental recapitulation, functional assessment and mechanistic elucidation of the wound signature in breast epithelial cells.
Project description:Signatures of Oncogenic Pathway Deregulation in Human Cancers. The ability to define cancer subtypes, recurrence of disease, and response to specific therapies using DNA microarray-based gene expression signatures has been demonstrated in multiple studies. Such data is also of substantial importance to the analysis of cellular signaling pathways central to the oncogenic process. With this focus, we have developed a series of gene expression signatures that reliably reflect the activation status of several oncogenic pathways. When evaluated in several large collections of human cancers, these gene expression signatures identify patterns of pathway deregulation in tumors, and clinically relevant associations with disease outcomes. Combining signature-based predictions across several pathways identifies coordinated patterns of pathway deregulation that distinguish between specific cancers and tumor sub-types. Clustering tumors based on pathway signatures further defines prognosis in respective patient subsets, demonstrating that patterns of oncogenic pathway deregulation underlie the development of the oncogenic phenotype and reflect the biology and outcome of specific cancers. Furthermore, predictions of pathway deregulation in cancer cell lines are shown to coincide with sensitivity to therapeutic agents that target components of the pathway, underscoring the potential for such pathway prediction to guide the use of targeted therapeutics. Experiment Overall Design: RNA was extracted from frozen tissue of primary breast tumors for gene array analysis.
Project description:We used microarrays to profile 30 human primary breast tumors and determine global gene expression patterns and molecular subtypes Experiment Overall Design: RNA from SNAP frozen human tumor biopsies was analyzed on Affymetrix mircroarrays