Analysis of human hepatic microsomal glucose-6-phosphatase in clinical conditions where the T2 pyrophosphate/phosphate transport protein is absent.
Ontology highlight
ABSTRACT: The availability of a rare set of human hepatic microsomes in which T2, a pyrophosphate/phosphate transport protein of the glucose-6-phosphatase system, has been shown immunologically to be completely absent, has permitted further characterization of multicomponent glucose-6-phosphatase (EC 3.1.3.9). Pyrophosphatase activity in intact microsomes was found to be totally absent, but was normal in disrupted microsomes. However, Pi did not accumulate within the lumen of the microsomes when glucose 6-phosphate was the substrate. This was not as predicted if there is only one transport protein in the endoplasmic reticulum capable of transporting Pi, produced by glucose-6-phosphatase, out of the lumen. The results suggest that the pyrophosphate/phosphate transport system of human hepatic endoplasmic reticulum must be more complex than previously thought, as it must comprise at least two protein components.
Project description:A 52 kDa polypeptide in rat liver microsomes was identified as a glucose-binding protein by its ability to weakly bind cytochalasin B and by its cross-reactivity to an antibody raised against the human erythrocyte glucose transport protein. The microsomal glucose binding polypeptide was purified by affinity chromatography and an antibody was raised against it. The inhibitory effect of this antibody on rat microsomal glucose-6-phosphatase activity and on glucose transport out of microsomal vesicles indicates that this protein is a microsomal glucose transport protein.
Project description:Hepatic microsomal glucose-6-phosphatase activity was rendered extremely unstable by a variety of techniques: (a) incubation at pH 5.0; (b) extraction of the microsomal fraction in the presence of 1% Lubrol; (c) various purification procedures. These techniques all result in the removal of a 21 kDa polypeptide from the fraction containing glucose-6-phosphatase activity. The 21 kDa protein was purified to apparent homogeneity by solubilization in the detergent Lubrol 12A-9 and chromatography on Fractogel TSK DEAE-650(S) and centrifugation at 105 000 g. The 21 kDa protein stabilizes glucose-6-phosphatase activity, whereas other purified hepatic microsomal proteins do not. The 21 kDa protein appears to be a potential regulator of glucose-6-phosphatase activity.
Project description:Antibodies raised against a 52 kDa rat liver microsomal glucose-transport protein were used to screen a rat liver cDNA library. Six positive clones were isolated. Two clones were found to be identical with the liver plasma-membrane glucose-transport protein termed GLUT 2. The sequence of the four remaining clones indicates that they encode a unique microsomal facilitative glucose-transport protein which we have termed GLUT 7. Sequence analysis revealed that the largest GLUT 7 clone was 2161 bp in length and encodes a protein of 528 amino acids. The deduced amino acid sequence of GLUT 7 shows 68% identity with the deduced amino acid sequence of rat liver GLUT 2. The GLUT 7 sequence is six amino acids longer than rat liver GLUT 2, and the extra six amino acids at the C-terminal end contain a consensus motif for retention of membrane-spanning proteins in the endoplasmic reticulum. When the largest GLUT 7 clone was transfected into COS 7 cells the expressed protein was found in the endoplasmic reticulum and nuclear membrane, but not in the plasma membrane. Microsomes isolated from the transfected COS 7 cells demonstrated an increase in their microsomal glucose-transport capacity, demonstrating that the GLUT 7 clone encodes a functional endoplasmic-reticulum glucose-transport protein.
Project description:Measurements have been made of the tissue content of phosphoribosyl pyrophosphate (PPRibP) and of a range of metabolic intermediates involved in the energy charge of the cell, the glycolytic and pentose phosphate pathways, and of the activity of the enzymes of the pentose phosphate pathway and of PPRibP synthetase (EC 2.7.6.1) in the livers of normal, diabetic, insulin-treated diabetic and starved rats and in livers of rats previously starved and then re-fed with high-fat or high-carbohydrate diets. Diabetes, starvation and high-fat diet all caused a fall in the hepatic PPRibP content, whereas insulin treatment and high-carbohydrate diet raised the tissue content. A positive correlation was shown between the PPRibP content and ATP, energy charge and the cytosolic [NAD+]/[NADH] quotient. A positive association between the PPRibP content and the flux of glucose through the pentose phosphate pathway and the synthesis of ribose 5-phosphate via the oxidative enzymes of that pathway, including ribose-5-phosphate isomerase (EC 5.3.1.6), was also observed. A negative correlation was found between the ADP, AMP and Pi contents, and no correlation existed between PPRibP content and the enzymes of the non-oxidative branch of the pentose phosphate pathway. There was no correlation between hepatic PPRibP content and the activity of PPRibP synthetase measured in vitro. These results are considered in relation to the control of PPRibP synthetase in the liver in vivo.
Project description:ObjectiveDeregulation of hepatic glucose production is a key driver in the pathogenesis of diabetes, but its short-term regulation is incompletely deciphered. According to textbooks, glucose is produced in the endoplasmic reticulum by glucose-6-phosphatase (G6Pase) and then exported in the blood by the glucose transporter GLUT2. However, in the absence of GLUT2, glucose can be produced by a cholesterol-dependent vesicular pathway, which remains to be deciphered. Interestingly, a similar mechanism relying on vesicle trafficking controls short-term G6Pase activity. We thus investigated whether Caveolin-1 (Cav1), a master regulator of cholesterol trafficking, might be the mechanistic link between glucose production by G6Pase in the ER and glucose export through a vesicular pathway.MethodsGlucose production from fasted mice lacking Cav1, GLUT2 or both proteins was measured in vitro in primary culture of hepatocytes and in vivo by pyruvate tolerance tests. The cellular localization of Cav1 and the catalytic unit of glucose-6-phosphatase (G6PC1) were studied by western blotting from purified membranes, immunofluorescence on primary hepatocytes and fixed liver sections and by in vivo imaging of chimeric constructs overexpressed in cell lines. G6PC1 trafficking to the plasma membrane was inhibited by a broad inhibitor of vesicular pathways or by an anchoring system retaining G6PC1 specifically to the ER membrane.ResultsHepatocyte glucose production is reduced at the step catalyzed by G6Pase in the absence of Cav1. In the absence of both GLUT2 and Cav1, gluconeogenesis is nearly abolished, indicating that these pathways can be considered as the two major pathways of de novo glucose production. Mechanistically, Cav1 colocalizes but does not interact with G6PC1 and controls its localization in the Golgi complex and at the plasma membrane. The localization of G6PC1 at the plasma membrane is correlated to glucose production. Accordingly, retaining G6PC1 in the ER reduces glucose production by hepatic cells.ConclusionsOur data evidence a pathway of glucose production that relies on Cav1-dependent trafficking of G6PC1 to the plasma membrane. This reveals a new cellular regulation of G6Pase activity that contributes to hepatic glucose production and glucose homeostasis.
Project description:We have examined the interactions of the histidine-specific reagent diethyl pyrocarbonate (DEPC) with the components of the rat hepatic glucose-6-phosphatase system (EC 3.1.3.9). DEPC is the first known reagent that satisfies the criteria of an active-site-specific label for the phosphohydrolase component. (a) It inactivates through formation of a stable covalent bond. (b) It is effective at reasonably low concentrations (2-4 mM) under relatively mild conditions (e.g. 30 degrees C at neutral pH). (c) Inactivation is substantially blocked by glucose 6-phosphate, Pi and NaF, compounds which are known to interact quite specifically with the phosphohydrolase. (d) Under conditions where glucose 6-phosphate and NaF protect the enzyme, no protection is provided against DEPC-mediated inactivation of two other functional components of the membrane, the glucose 6-phosphate translocase and UDP-glucuronyltransferase. DEPC also shows potential for use at 0 degree C as a label for UDP-glucuronyltransferase.
Project description:It is well established that, besides facilitating lipid absorption, bile acids act as signaling molecules that modulate glucose and lipid metabolism. Bile acid metabolism, in turn, is controlled by several nutrient-sensitive transcription factors. Altered intrahepatic glucose signaling in type 2 diabetes associates with perturbed bile acid synthesis. We aimed to characterize the regulatory role of the primary intracellular metabolite of glucose, glucose-6-phosphate (G6P), on bile acid metabolism. Hepatic gene expression patterns and bile acid composition were analyzed in mice that accumulate G6P in the liver, that is, liver-specific glucose-6-phosphatase knockout (L-G6pc-/- ) mice, and mice treated with a pharmacological inhibitor of the G6P transporter. Hepatic G6P accumulation induces sterol 12α-hydroxylase (Cyp8b1) expression, which is mediated by the major glucose-sensitive transcription factor, carbohydrate response element-binding protein (ChREBP). Activation of the G6P-ChREBP-CYP8B1 axis increases the relative abundance of cholic-acid-derived bile acids and induces physiologically relevant shifts in bile composition. The G6P-ChREBP-dependent change in bile acid hydrophobicity associates with elevated plasma campesterol/cholesterol ratio and reduced fecal neutral sterol loss, compatible with enhanced intestinal cholesterol absorption. Conclusion: We report that G6P, the primary intracellular metabolite of glucose, controls hepatic bile acid synthesis. Our work identifies hepatic G6P-ChREBP-CYP8B1 signaling as a regulatory axis in control of bile acid and cholesterol metabolism.
Project description:Efficient replication in vivo is essential for a microparasite to colonize its host and the understanding of the molecular mechanisms by which microbial pathogens grow within host tissues can lead to the discovery of novel therapies to treat infection. Here we present evidence that the foodborne bacterial pathogen Listeria monocytogenes, a facultative intracellular parasite, exploits hexose phosphates (HP) from the host cell as a source of carbon and energy to fuel fast intracellular growth. HP uptake is mediated by Hpt, a bacterial homolog of the mammalian translocase that transports glucose-6-phosphate from the cytosol into the endoplasmic reticulum in the final step of gluconeogenesis and glycogenolysis. Expression of the Hpt permease is tightly controlled by the central virulence regulator PrfA, which upon entry into host cells induces a set of virulence factors required for listerial intracellular parasitism. Loss of Hpt resulted in impaired listerial intracytosolic proliferation and attenuated virulence in mice. Hpt is the first virulence factor to be identified as specifically involved in the replication phase of a facultative intracellular pathogen. It is also a clear example of how adaptation to intracellular parasitism by microbial pathogens involves mimicry of physiological mechanisms of their eukaryotic host cells.
Project description:The biogenesis of bacterial cell-envelope polysaccharides requires the translocation, across the plasma membrane, of sugar sub-units that are produced inside the cytoplasm. To this end, the hydrophilic sugars are anchored to a lipid phosphate carrier (undecaprenyl phosphate (C55-P)), yielding membrane intermediates which are translocated to the outer face of the membrane. Finally, the glycan moiety is transferred to a nascent acceptor polymer, releasing the carrier in the "inactive" undecaprenyl pyrophosphate (C55-PP) form. Thus, C55-P is generated through the dephosphorylation of C55-PP, itself arising from either de novo synthesis or recycling. Two types of integral membrane C55-PP phosphatases were described: BacA enzymes and a sub-group of PAP2 enzymes (type 2 phosphatidic acid phosphatases). The human pathogen Helicobacter pylori does not contain BacA homologue but has four membrane PAP2 proteins: LpxE, LpxF, HP0350 and HP0851. Here, we report the physiological role of HP0851, renamed HupA, via multiple and complementary approaches ranging from a detailed biochemical characterization to the assessment of its effect on cell envelope metabolism and microbe-host interactions. HupA displays a dual function as being the main C55-PP pyrophosphatase (UppP) and phosphatidylglycerol phosphate phosphatase (PGPase). Although not essential in vitro, HupA was essential in vivo for stomach colonization. In vitro, the remaining UppP activity was carried out by LpxE in addition to its lipid A 1-phosphate phosphatase activity. Both HupA and LpxE have crucial roles in the biosynthesis of several cell wall polysaccharides and thus constitute potential targets for new therapeutic strategies.
Project description:Microsomal fractions isolated from pancreatic islet cells were shown to contain high specific glucose-6-phosphatase activity. The islet-cell glucose-6-phosphatase enzyme has the same Mr (36,500), similar immunological properties and kinetic characteristics to the hepatic microsomal glucose-6-phosphatase enzyme.