Radiation-inactivation analysis of vacuolar H(+)-ATPase and H(+)-pyrophosphatase from Beta vulgaris L. Functional sizes for substrate hydrolysis and for H+ transport.
Ontology highlight
ABSTRACT: The functional sizes of the vacuolar H(+)-ATPase (V-ATPase; EC 3.6.1.34) and H(+)-pyrophosphatase (PPase; EC 3.6.1.1) from vacuolar membranes of red beet (Beta vulgaris L.) were estimated by radiation inactivation, both for substrate hydrolysis and for H+ transport. For the V-ATPase, the radiation-inactivation size for H+ transport was 446 (403-497) kDa and that for ATP hydrolysis was 394 (359-435) kDa. The low values of both of these estimates suggest that not all subunits which may co-purify with V-ATPases are required for either hydrolysis or transport. For the PPase, the radiation-inactivation size for hydrolysis was 91 (82-103) kDa, suggesting that the minimum functional unit for hydrolysis is the 81 kDa monomer. In contrast to the V-ATPase, the PPase gave a radiation-inactivation size for transport which was 3-4-fold larger than that for hydrolysis (two estimates for transport gave 307 and 350 kDa), indicating that a single catalytic subunit is insufficient for transport activity.
SUBMITTER: Sarafian V
PROVIDER: S-EPMC1131062 | biostudies-other | 1992 Apr
REPOSITORIES: biostudies-other
ACCESS DATA