Unknown

Dataset Information

0

Intracellular calcium mobilization and activation of the Na+/H+ exchanger in platelets.


ABSTRACT: The aim of the present study was to evaluate the regulatory relationship between the cytosolic free calcium concentration ([Ca2+]i and cytosolic pH (pHi). [Ca2+]i and pHi were measured using the fluorescent dyes fura-2 and BCECF [2',7'-bis-(carboxyethyl)-5,6-carboxyfluorescein] respectively. In a medium with 1 mmol/l extracellular calcium, thrombin (2.5 units/ml) induced an increment in [Ca2+]i of 638 +/- 31 nmol/l (n = 5) and an intracellular alkalinization of 0.14 +/- 0.01 pH units (n = 8). Both responses were dependent on the concentration of thrombin, displaying a sigmoidal dose-response pattern. The intracellular alkalinization was dependent upon extracellular Na+ and was amiloride-sensitive, indicating that it was mediated by activation of the Na+/H+ exchanger. When extracellular calcium was chelated with EGTA prior to the addition of thrombin, the intracellular alkalinization was not affected (0.15 +/- 0.02 at 2.5 units/ml thrombin, n = 8). Under these circumstances, the [Ca2+]i increment represents mobilization from internal stores, reaching 157 +/- 42 nmol/l at 2.5 units/ml thrombin. When platelets were preloaded with the intracellular calcium chelator MAPTAM (1,2-bis-5-methylaminophenoxylethane-NNN'-tetraacetoxymethyl acetate) to block the increase in [Ca2+]i induced by thrombin, no increment in pHi was observed. Moreover, MAPTAM-loaded calcium-depleted platelets had a basal pHi that was more acidic than in the presence of 1 mmol/l extracellular calcium (6.93 +/- 0.09 versus 7.14 +/- 0.01, n = 26, P < 0.001). Ionomycin induced an elevation of [Ca2+]i that was accompanied by a concomitant increase in pHi, which was Na(+)-dependent and amiloride-sensitive. [Ca2+]i and pHi increases induced by ionomycin were both dependent on the concentration of ionomycin. In conclusion, an increase in [Ca2+]i is necessary for the agonist-induced activation of the Na+/H+ exchanger in platelets. Non-agonist-induced increases in [Ca2+]i seems to prompt activation of the exchanger. In addition, Ca(2+)-depleted platelets have a more acidic basal pHi, indicating that the basal level of [Ca2+]i is also important for maintaining the basal pHi.

SUBMITTER: Poch E 

PROVIDER: S-EPMC1132319 | biostudies-other | 1993 Mar

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1219372 | biostudies-other
| S-EPMC2911288 | biostudies-literature
| S-EPMC3111418 | biostudies-literature
| S-EPMC6007892 | biostudies-literature
| S-EPMC2883686 | biostudies-literature
| S-EPMC2830319 | biostudies-literature
| S-EPMC2892889 | biostudies-literature
| S-EPMC7061093 | biostudies-literature
| S-EPMC2924106 | biostudies-literature
| S-EPMC1217805 | biostudies-other