Klebsiella pneumoniae nitrogenase MoFe protein: chymotryptic proteolysis affects function by limited cleavage of the beta-chain and provides high-specific-activity MoFe protein.
Ontology highlight
ABSTRACT: Proteinase treatment with chymotrypsin has been used to probe the structure of native Klebsiella pneumoniae nitrogenase MoFe protein (Kp1). Reaction with chymotrypsin did not bleach Kp1, suggesting that it did not destroy the metal centres, and the Mo and Fe contents of Kp1 were unchanged. High ratios of chymotrypsin to Kp1 (1:1 by mass) cleaved the beta-chain of Kp1 to give 44 and 14 kDa polypeptides, which N-terminal amino acid sequence analysis showed to be derived from cleavage at residue beta-Phe124. A mutant MoFe protein, Kp1Met-124, in which beta-Phe124 is replaced by methionine, was not cleaved by chymotrypsin. Under non-denaturing conditions, the 'nicked' beta-chain of the wild-type protein remained associated with the alpha-chain. The alpha-chain was not cleaved by the proteinase treatment. Fission of the wild-type beta-chain was accompanied by loss of enzyme activity, loss of intensity of the g = 3.7 e.p.r. signal derived from dithionite-reduced FeMoco and by changes in the visible spectrum. The e.p.r. spectra of potassium ferricyanide-oxidized native and digested Kp1 show differences in the signals between g = 1.6 and 2.0. After prolonged treatment, the final specific activity of Kp1 was about 25 +/- 5% of the initial activity. This corresponded to 25 +/- 5% of the beta-chain which was resistant to proteolytic action. Brief treatment of Kp1 with a lower concentration of chymotrypsin (chymotrypsin/Kp1 ratio = 1:10 by mass, for 10 min) preferentially cleaved high-molecular-mass polypeptides that routinely contaminate preparations of Kp1 prepared by standard procedures. Treatment with chymotrypsin followed by gel filtration to remove the proteinase and cleaved protein fragments can therefore be used to increase significantly the specific activity of Kp1 preparations and remove contaminating activities, such as the ATPase activity of myokinase.
SUBMITTER: Fisher K
PROVIDER: S-EPMC1132518 | biostudies-other | 1993 Apr
REPOSITORIES: biostudies-other
ACCESS DATA