Acyloin production from aldehydes in the perfused rat heart: the potential role of pyruvate dehydrogenase.
Ontology highlight
ABSTRACT: Aldehydes represent an important class of cytotoxic products derived from free radical-induced lipid peroxidation which may contribute to reperfusion injury following myocardial infarct. Metabolism of aldehydes in the heart has not been well characterized aside from conjugation of unsaturated aldehydes with glutathione. However, aliphatic aldehydes like hexanal do not form stable glutathione conjugates. We have recently demonstrated in vitro that pig heart pyruvate dehydrogenase catalyses a reaction between pyruvate and saturated aldehydes to produce acyloins (3-hydroxyalkan-2-ones). In the present study, rat hearts were perfused with various aldehydes and pyruvate. Acyloins were generated from saturated aldehydes (butanal, hexanal or nonanal), but not from 2-hexanal (an unsaturated aldehyde) or malondialdehyde. Hearts perfused with 2 mM pyruvate and 10-100 microM hexanal rapidly took up hexanal in a dose-related manner (140-850 nmol/min), and released 3-hydroxyoctan-2-one (0.7-30 nmol/min), 2,3-octanediol (0-12 nmol/min) and hexanol (10-200 nmol/min). Small quantities of hexanoic acid (about 10 nmol/min) were also released. The rate of release of acyloin metabolites rose with increased concentration of hexanal, whereas hexanol release attained a plateau when hexanal infusion concentrations rose above 50 microM. Up to 50% of hexanal uptake could be accounted for by metabolite release. Less than 0.5% of hexanal uptake was found to be bound to acid-precipitable macromolecules. When hearts perfused with 50 microM hexanal and 2 mM pyruvate were subjected to a 15 min ischaemic period, the rates of release of 2,3-octanediol, 3-hydroxyoctan-2-one, hexanol and hexanoate during the reperfusion period were not significantly different from those in the pre-ischaemic period. Our results indicate that saturated aldehydes can be metabolically converted by the heart into stable diffusible compounds.
SUBMITTER: Montgomery JA
PROVIDER: S-EPMC1134523 | biostudies-other | 1993 Sep
REPOSITORIES: biostudies-other
ACCESS DATA