Octopus S-crystallins with endogenous glutathione S-transferase (GST) activity: sequence comparison and evolutionary relationships with authentic GST enzymes.
Ontology highlight
ABSTRACT: S-Crystallin is a major protein present in the lenses of cephalopods (octopus and squid). To facilitate the cloning of this crystallin gene, cDNA was constructed from the poly(A)+ mRNA of octopus lenses, and amplified by PCR for nucleotide sequencing. Sequencing of 10 of 15 positive clones coding for this crystallin revealed three distinct S-crystallin isoforms with 61-64% identity in nucleotide sequences and 42-58% similarity in amino acid sequences when compared with homologous crystallins in squid lenses. These charge-isomeric crystallins also show between 26 and 33% amino acid sequence identity to four major classes of glutathione S-transferase (GST), a major detoxification enzyme present in most mammalian tissues. For further analysis, expression of one of the S-crystallin cDNAs was carried out in the bacterial expression system pQE-30, and the S-crystallin protein produced in Escherichia coli was purified to homogeneity to determine the enzymic properties. We found that the expressed octopus S-crystallin possessed much lower GST activity than the authentic GSTs from other tissues. Sequence comparison and construction of phylogenetic trees for S-crystallins from squid and octopus lenses and various classes of GSTs revealed that S-crystallins represent a multigene family which is structurally related to Alpha-class GSTs and probably derived from the ancestral GST by gene duplication and subsequent multiple mutational substitutions.
SUBMITTER: Chiou SH
PROVIDER: S-EPMC1135702 | biostudies-other | 1995 Aug
REPOSITORIES: biostudies-other
ACCESS DATA