Unknown

Dataset Information

0

Strategic manipulation of the substrate specificity of Saccharomyces cerevisiae flavocytochrome b2.


ABSTRACT: Flavocytochrome b2 from Saccharomyces cerevisiae acts physiologically as an L-lactate dehydrogenase. Although L-lactate is its primary substrate, the enzyme is also able to utilize a variety of other (S)-2-hydroxy acids. Structural studies and sequence comparisons with several related flavoenzymes have identified the key active-site residues required for catalysis. However, the residues Ala-198 and Leu-230, found in the X-ray-crystal structure to be in contact with the substrate methyl group, are not well conserved. We propose that the interaction between these residues and a prospective substrate molecule has a significant effect on the substrate specificity of the enzyme. In an attempt to modify the specificity in favour of larger substrates, three mutant enzymes have been produced: A198G, L230A and the double mutant A198G/L230A. As a means of quantifying the overall kinetic effect of a mutation, substrate-specificity profiles were produced from steady-state experiments with (S)-2-hydroxy acids of increasing chain length, through which the catalytic efficiency of each mutant enzyme with each substrate could be compared with the corresponding wild-type efficiency. The Ala-198-->Gly mutation had little influence on substrate specificity and caused a general decrease in enzyme efficiency. However, the Leu-230-->Ala mutation caused the selectivity for 2-hydroxyoctanoate over lactate to increase by a factor of 80.

SUBMITTER: Daff S 

PROVIDER: S-EPMC1137062 | biostudies-other | 1994 Aug

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1219563 | biostudies-other
| S-EPMC2142803 | biostudies-other
| S-EPMC3485725 | biostudies-literature
| S-EPMC1132387 | biostudies-other
| S-EPMC2494847 | biostudies-literature
| S-EPMC161439 | biostudies-literature
| S-EPMC5371240 | biostudies-literature
| S-EPMC1149808 | biostudies-other
| S-EPMC2691958 | biostudies-literature
| S-EPMC7395602 | biostudies-literature