Engineering and overexpression of periplasmic forms of the penicillin-binding protein 3 of Escherichia coli.
Ontology highlight
ABSTRACT: Replacement of the 36 and 56 N-terminal amino acid residues of the 588-amino-acid-residue membrane-bound penicillin-binding protein 3 (PBP3) of Escherichia coli by the OmpA signal peptide allows export of F37-V577 PBP3 and G57-V577 PBP3 respectively into the periplasm. The modified ftsI genes were placed under the control of the fused lpp promoter and lac promoter/operator; expression of the truncated PBP3s was optimized by varying the copy number of the recombinant plasmids and the amount of LacI repressor, and export was facilitated by increasing the SecB content of the producing strain. The periplasmic PBP3s (yield 8 mg/l of culture) were purified to 70% protein homogeneity. They require the presence of 0.25 M NaCl to remain soluble. Like the membrane-bound PBP3, they undergo processing by elimination of the C-terminal decapeptide I578-S588, they bind penicillin in a 1:1 molar ratio and they catalyse hydrolysis and aminolysis of acyclic thioesters that are analogues of penicillin. The membrane-anchor-free PBP3s have ragged N-termini. The G57-V577 PBP3, however, is less prone to proteolytic degradation than the F37-V577 PBP3.
Project description:The HisJ protein from Escherichia coli and related Gram negative bacteria is the periplasmic component of a bacterial ATP-cassette (ABC) transporter system. Together these proteins form a transmembrane complex that can take up L-histidine from the environment and translocate it into the cytosol. We have studied the specificity of HisJ for binding L-His and many related naturally occurring compounds. Our data confirm that L-His is the preferred ligand, but that 1-methyl-L-His and 3-methyl-L-His can also bind, while the dipeptide carnosine binds weakly and D-histidine and the histidine degradation products, histamine, urocanic acid and imidazole do not bind. L-Arg, homo-L-Arg, and post-translationally modified methylated Arg-analogs also bind with reasonable avidity, with the exception of symmetric dimethylated-L-Arg. In contrast, L-Lys and L-Orn have considerably weaker interactions with HisJ and methylated and acetylated Lys variants show relatively poor binding. It was also observed that the carboxylate group of these amino acids and their variants was very important for proper recognition of the ligand. Taken together our results are a key step towards designing HisJ as a specific protein-based reagentless biosensor.
Project description:Penicillin-binding protein 6 (PBP6) is one of the two main DD-carboxypeptidases in Escherichia coli, which are implicated in maturation of bacterial cell wall and formation of cell shape. Here, we report the first X-ray crystal structures of PBP6, capturing its apo state (2.1 A), an acyl-enzyme intermediate with the antibiotic ampicillin (1.8 A), and for the first time for a PBP, a preacylation complex (a "Michaelis complex", determined at 1.8 A) with a peptidoglycan substrate fragment containing the full pentapeptide, NAM-(L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala). These structures illuminate the molecular interactions essential for ligand recognition and catalysis by DD-carboxypeptidases, and suggest a coupling of conformational flexibility of active site loops to the reaction coordinate. The substrate fragment complex structure, in particular, provides templates for models of cell wall recognition by PBPs, as well as substantiating evidence for the molecular mimicry by beta-lactam antibiotics of the peptidoglycan acyl-D-Ala-D-Ala moiety.
Project description:Heterologous overexpression of foreign proteins in Escherichia coli often leads to insoluble aggregates of misfolded inactive proteins, so-called inclusion bodies. To solve this problem use of chaperones or in vitro refolding procedures are the means of choice. These methods are time consuming and cost intensive, due to additional purification steps to get rid of the chaperons or the process of refolding itself. We describe an easy to use lab-scale method to avoid formation of inclusion bodies. The method systematically combines use of co-solvents, usually applied for in vitro stabilization of biologicals in biopharmaceutical formulation, and periplasmic expression and can be completed in one week using standard equipment in any life science laboratory. Demonstrating the unique power of our method, we overproduced and purified for the first time an active chlamydial penicillin-binding protein, demonstrated its function as penicillin sensitive DD-carboxypeptidase and took a major leap towards understanding the "chlamydial anomaly."
Project description:In Escherichia coli, the peptidoglycan cell wall is synthesized by bifunctional penicillin-binding proteins such as PBP1b that have both transpeptidase and transglycosylase activities. The PBP1b transpeptidase domain is a major target of β-lactams, and therefore it is important to attain a detailed understanding of its inhibition. The peptidoglycan glycosyltransferase domain of PBP1b is also considered an excellent antibiotic target yet is not exploited by any clinically approved antibacterials. Herein, we adapt a pyrophosphate sensor assay to monitor PBP1b-catalyzed glycosyltransfer and present an improved crystallographic model for inhibition of the PBP1b glycosyltransferase domain by the potent substrate analog moenomycin. We elucidate the structure of a previously disordered region in the glycosyltransferase active site and discuss its implications with regards to peptidoglycan polymerization. Furthermore, we solve the crystal structures of E. coli PBP1b bound to multiple different β-lactams in the transpeptidase active site and complement these data with gel-based competition assays to provide a detailed structural understanding of its inhibition. Taken together, these biochemical and structural data allow us to propose new insights into inhibition of both enzymatic domains in PBP1b.
Project description:In Escherichia coli, penicillin-binding protein 3 (PBP3), also known as FtsI, is a central component of the divisome, catalyzing cross-linking of the cell wall peptidoglycan during cell division. PBP3 is mainly periplasmic, with a 23 residues cytoplasmic tail and a single transmembrane helix. We have solved the crystal structure of a soluble form of PBP3 (PBP3(57-577)) at 2.5 Å revealing the two modules of high molecular weight class B PBPs, a carboxy terminal module exhibiting transpeptidase activity and an amino terminal module of unknown function. To gain additional insight, the PBP3 Val88-Ser165 subdomain (PBP3(88-165)), for which the electron density is poorly defined in the PBP3 crystal, was produced and its structure solved by SAD phasing at 2.1 Å. The structure shows a three dimensional domain swapping with a β-strand of one molecule inserted between two strands of the paired molecule, suggesting a possible role in PBP3(57-577) dimerization.
Project description:Escherichia coli HisJ is a type II periplasmic binding protein that functions to reversibly capture histidine and transfer it to its cognate inner membrane ABC permease. Here, we used NMR spectroscopy to determine the structure of apo-HisJ (26.5 kDa) in solution. HisJ is a bilobal protein in which domain 1 (D1) is made up of two noncontiguous subdomains, and domain 2 (D2) is expressed as the inner domain. To better understand the roles of D1 and D2, we have isolated and characterized each domain separately. Structurally, D1 closely resembles its homologous domain in apo- and holo-HisJ, whereas D2 is more similar to the holo-form. NMR relaxation experiments reveal that HisJ becomes more ordered upon ligand binding, whereas isolated D2 experiences a significant reduction in slower (millisecond to microsecond) motions compared with the homologous domain in apo-HisJ. NMR titrations reveal that D1 is able to bind histidine in a similar manner as full-length HisJ, albeit with lower affinity. Unexpectedly, isolated D1 and D2 do not interact with each other in the presence or absence of histidine, which indicates the importance of intact interdomain-connecting elements (i.e. hinge regions) for HisJ functioning. Our results shed light on the binding mechanism of type II periplasmic binding proteins where ligand is initially bound by D1, and D2 plays a supporting role in this dynamic process.
Project description:Periplasmic ligand-binding proteins (PBPs) bind ligands with a high affinity and specificity. They undergo a large conformational change upon ligand binding, and they have a robust protein fold. These physical features have made them ideal candidates for use in protein engineering projects to develop novel biosensors and signaling molecules. The Escherichia coli MppA (murein peptide permease A) PBP binds the murein tripeptide, l-alanyl-γ-d-glutamyl-meso-diaminopimelate, (l-Ala-γ-d-Glu-meso-Dap), which contains both a D-amino acid and a gamma linkage between two of the amino acids. We have solved a high-resolution X-ray crystal structure of E. coli MppA at 1.5 Å resolution in the unliganded, open conformation. Now, structures are available for this member of the PBP protein family in both the liganded/closed form and the unliganded/open form.
Project description:UnlabelledMembrane proteins need to be properly inserted and folded in the membrane in order to perform a range of activities that are essential for the survival of bacteria. The Sec translocon and the YidC insertase are responsible for the insertion of the majority of proteins into the cytoplasmic membrane. YidC can act in combination with the Sec translocon in the insertion and folding of membrane proteins. However, YidC also functions as an insertase independently of the Sec translocon for so-called YidC-only substrates. In addition, YidC can act as a foldase and promote the proper assembly of membrane protein complexes. Here, we investigate the effect of Escherichia coli YidC depletion on the assembly of penicillin binding proteins (PBPs), which are involved in cell wall synthesis. YidC depletion does not affect the total amount of the specific cell division PBP3 (FtsI) in the membrane, but the amount of active PBP3, as assessed by substrate binding, is reduced 2-fold. A similar reduction in the amount of active PBP2 was observed, while the levels of active PBP1A/1B and PBP5 were essentially similar. PBP1B and PBP3 disappeared from higher-Mw bands upon YidC depletion, indicating that YidC might play a role in PBP complex formation. Taken together, our results suggest that the foldase activity of YidC can extend to the periplasmic domains of membrane proteins.ImportanceThis study addresses the role of the membrane protein insertase YidC in the biogenesis of penicillin binding proteins (PBPs). PBPs are proteins containing one transmembrane segment and a large periplasmic or extracellular domain, which are involved in peptidoglycan synthesis. We observe that in the absence of YidC, two critical PBPs are not correctly folded even though the total amount of protein in the membrane is not affected. Our findings extend the function of YidC as a foldase for membrane protein (complexes) to periplasmic domains of membrane proteins.
Project description:Nickel is an essential micronutrient for the survival of many microbes. On account of the toxicity of nickel and its scarcity in the environment, microbes have evolved specific systems for uptaking and delivering nickel to enzymes. NikA, the solute binding protein for the ATP-binding cassette (ABC) importer NikABCDE, plays a vital role in the nickel homeostasis of Escherichia coli by selectively binding nickel over other metals in the metabolically complex periplasm. While the endogenous ligand for NikA is known to be the Ni(II)-(L-His)2 complex, the molecular basis by which NikA selectively binds Ni(II)-(L-His)2 is unclear, especially considering that NikA can bind multiple metal-based ligands with comparable affinity. Here we show that, regardless of its promiscuous binding activity, NikA preferentially interacts with Ni(II)-(L-His)2, even over other metal-amino acid ligands with an identical coordination geometry for the metal. Replacing both the Ni(II) and the L-His residues in Ni(II)-(L-His)2 compromises binding of the ligand to NikA, in part because these alterations affect the degree by which NikA closes around the ligand. Replacing H416, the only NikA residue that ligates the Ni(II), with other potential metal-coordinating amino acids decreases the binding affinity of NikA for Ni(II)-(L-His)2 and compromises uptake of Ni(II) into E. coli cells, likely due to altered metal selectivity of the NikA mutants. Together, the biochemical and in vivo studies presented here define key aspects of how NikA selects for Ni(II)-(L-His)2 over other metal complexes, and can be used as a reference for studies into the metal selectivity of other microbial solute binding proteins.
Project description:In Escherichia coli , the bifunctional penicillin-binding proteins (PBPs), PBP1A and PBP1B, play critical roles in the final stage of peptidoglycan (PG) biosynthesis. These synthetic enzymes each possess a PG glycosyltransferase (PGT) domain and a transpeptidase (TP) domain. Recent genetic experiments have shown that PBP1A and PBP1B each require an outer membrane lipoprotein, LpoA and LpoB, respectively, to function properly in vivo. Here, we use complementary assays to show that LpoA and LpoB each increase the PGT and TP activities of their cognate PBPs, albeit by different mechanisms. LpoA directly increases the rate of the PBP1A TP reaction, which also results in enhanced PGT activity; in contrast, LpoB directly affects PGT domain activity, resulting in enhanced TP activity. These studies demonstrate bidirectional coupling of PGT and TP domain function. Additionally, the transpeptidation assay described here can be applied to study other activators or inhibitors of the TP domain of PBPs, which are validated drug targets.