Monoclonal antibodies to different protein-related epitopes of human articular cartilage proteoglycans.
Ontology highlight
ABSTRACT: Monoclonal antibodies produced against chondroitinase-treated human adult cartilage proteoglycans were selected for their ability to recognize epitopes on native proteoglycans. Binding analyses revealed that four of these monoclonal antibodies (BCD-4, BCD-7, EFG-4 and KPC-190) each recognized a different epitope on the same proteoglycan molecule which represents a subpopulation of a high buoyant density (D1) fraction of human articular cartilage proteoglycans (10, 30, 50 and 60% in fetal-newborn, 1.5 years old, 15 years old and 52-56 years old cartilages, respectively). Analysis of epitope specificities revealed that BCD-7 and EFG-4 monoclonal antibodies recognized epitopes on proteoglycan monomer which are associated with the protein structure in that they are sensitive to cleavage by Pronase, papain and alkali treatment and do not include keratan sulphate, chondroitin sulphate or oligosaccharides. The BCD-4 and KPC-190 epitopes also proved to be sensitive to Pronase or papain digestion or to alkali treatment, but keratanase or endo-beta-galactosidase also reduced the immunoreactivity of these epitopes. These observations indicate that the BCD-4 and KPC-190 epitopes represent peptides substituted with keratan sulphate or keratan sulphate-like structures. The BCD-4 epitope is, however, absent from a keratan sulphate-rich fragment of human adult proteoglycan, while the other three epitopes were detected in this fragment. None of these four epitopes were detected in the link proteins of human cartilage, in the hyaluronic acid-binding region of human newborn cartilage proteoglycan, in Swarm rat chondrosarcoma proteoglycan, in chicken limb bud proteoglycan monomer and in the small dermatan sulphate-proteoglycan of bovine costal cartilage. EFG-4 and KPC-190 epitopes were not detected in human fetal cartilage proteoglycans, although fetal molecules contained trace amounts of epitopes reactive with BCD-4 and BCD-7 antibodies.
SUBMITTER: Glant TT
PROVIDER: S-EPMC1146523 | biostudies-other | 1986 Feb
REPOSITORIES: biostudies-other
ACCESS DATA