Use of forskolin to study the relationship between cyclic AMP formation and bone resorption in vitro.
Ontology highlight
ABSTRACT: The effect of the adenylate cyclase activator forskolin on bone resorption and cyclic AMP accumulation was studied in an organ-culture system by using calvarial bones from 6-7-day-old mice. Forskolin caused a rapid and fully reversible increase of cyclic AMP, which was maximal after 20-30 min. The phosphodiesterase inhibitor rolipram (30 mumol/l), enhanced the cyclic AMP response to forskolin (50 mumol/l) from a net cyclic AMP response of 1234 +/- 154 pmol/bone to 2854 +/- 193 pmol/bone (mean +/- S.E.M., n = 4). The cyclic AMP level in bones treated with forskolin (30 mumol/l) was significantly increased after 24 h of culture. Forskolin, at and above 0.3 mumol/l, in the absence and the presence of rolipram (30 mumol/l), caused a dose-dependent cyclic AMP accumulation with an calculated EC50 (concentration producing half-maximal stimulation) value at 8.3 mumol/l. In 24 h cultures forskolin inhibited spontaneous and PTH (parathyroid hormone)-stimulated 45Ca release with calculated IC50 (concentration producing half-maximal inhibition) values at 1.6 and 0.6 mumol/l respectively. Forskolin significantly inhibited the release of 3H from [3H]proline-labelled bones stimulated by PTH (10 nmol/l). The inhibitory effect by forskolin on PTH-stimulated 45Ca release was significant already after 3 h of culture. In 24 h cultures forskolin (3 mumol/l) significantly inhibited 45Ca release also from bones stimulated by prostaglandin E2 (1 mumol/l) and 1 alpha-hydroxycholecalciferol (0.1 mumol/l). The inhibitory effect of forskolin on spontaneous and PTH-stimulated 45Ca release was transient. A dose-dependent stimulation of basal 45Ca release was seen in 120 h cultures, at and above 3 nmol of forskolin/l, with a calculated EC50 value at 16 nmol/l. The stimulatory effect of forskolin (1 mumol/l) could be inhibited by calcitonin (0.1 unit/ml), but was insensitive to indomethacin (1 mumol/l). Forskolin increased the release of 3H from [3H]proline-labelled bones cultured for 120 h and decreased the amount of hydroxyproline in bones after culture. Forskolin inhibited PTH-stimulated release of Ca2+, Pi, beta-glucuronidase and beta-N-acetylglucosaminidase in 24 h cultures. In 120 h cultures forskolin stimulated the basal release of minerals and lysosomal enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)
SUBMITTER: Lerner UH
PROVIDER: S-EPMC1147447 | biostudies-other | 1986 Dec
REPOSITORIES: biostudies-other
ACCESS DATA