Beta-D-xylosides and their analogues as artificial initiators of glycosaminoglycan chain synthesis. Aglycone-related variation in their effectiveness in vitro and in ovo.
Ontology highlight
ABSTRACT: A series of aryl and alkyl O-beta-D-xylosides and their analogues with S, NH or CH2 in the glycosidic linkage were prepared and examined for their ability to act as artificial chain initiators of chondroitin (dermatan) sulphate synthesis in embryonic chick cartilage, foetal rat skin and 6-week-old-rat aorta under conditions where normal protein-core synthesis was inhibited by cycloheximide. For all these tissues in culture, phenyl O-beta-D-xyloside and phenyl beta-D-thioxyloside were clearly more effective than the corresponding N-xyloside and homo-C-xyloside. Introduction of a carboxy group to the para position of their aglycone yielded derivatives with far lower initiator activity. In a concentration range lower than 0.1 mM, the effectiveness of alkyl beta-D-thioxyloside was greatly influenced by the carbon number (n) of the alkyl group and was at a maximum at n = 7 or 8 for the cartilage, at n = 5 for the skin and at n = 4 for the aorta. In the beta-xyloside-treated cartilages, the average length of newly formed chondroitin sulphate chains reflected the chain-initiator activity of added xyloside, i.e. the higher the initiator activity, the shorter the average chain length. In the skin and aorta, none of the drugs could relieve the inhibition of heparan sulphate synthesis caused by cycloheximide. Fertilized hens' eggs were each injected on day 9 with 9.2 mumol of beta-xyloside and the skeletal systems of embryos were examined a week later. The embryos treated with beta-xylosides of relatively high initiator activity showed a 30-40% decrease in the overall growth rate of skeletons, whereas those treated with beta-xylosides of low initiator activity showed little or no decrease in the growth rate. The results are consistent with the notion that the observed change in skeletal morphology results mainly, if not completely, from beta-xyloside-induced synthesis of core-protein-free chondroitin sulphate, and further suggest that a procedure employing a series of beta-xyloside homologues with various initiator activities will furnish an easily applied criterion on which to test the specificity of xyloside action on biological processes.
SUBMITTER: Sobue M
PROVIDER: S-EPMC1147601 | biostudies-other | 1987 Jan
REPOSITORIES: biostudies-other
ACCESS DATA