Unknown

Dataset Information

0

Formation and metabolism of inositol 1,4,5-trisphosphate in human platelets.


ABSTRACT: 1. myo-[3H]Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], when added to lysed platelets, was rapidly converted into [3H]inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4], which was in turn converted into [3H]inositol 1,3,4-trisphosphate [Ins(1,3,4)P3]. This result demonstrates that platelets have the same metabolic pathways for interconversion of inositol polyphosphates that are found in other cells. 2. Labelling of platelets with [32P]Pi, followed by h.p.l.c., was used to measure thrombin-induced changes in the three inositol polyphosphates. Interfering compounds were removed by a combination of enzymic and non-enzymic techniques. 3. Ins(1,4,5)P3 was formed rapidly, and reached a maximum at about 4 s. It was also rapidly degraded, and was no longer detectable after 30-60 s. 4. Formation of Ins(1,3,4,5)P4 was almost as rapid as that of Ins(1,4,5)P3, and it remained detectable for a longer time. 5. Ins(1,3,4)P3 was formed after an initial lag, and this isomer reached its maximum, which was 10-fold higher than that of Ins(1,4,5)P3, at 30 s. 6. Comparison of the intracellular Ca2+ concentration as measured with fura-2 indicates that agents other than Ins(1,4,5)P3 are responsible for the sustained maintenance of a high concentration of intracellular Ca2+. It is proposed that either Ins(1,3,4)P3 or Ins(1,3,4,5)P4 may also be Ca2+-mobilizing agents.

SUBMITTER: Daniel JL 

PROVIDER: S-EPMC1148246 | biostudies-other | 1987 Aug

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6128530 | biostudies-literature
| S-EPMC2998688 | biostudies-literature
| S-EPMC7231134 | biostudies-literature
| S-EPMC30134 | biostudies-literature
| S-EPMC1896291 | biostudies-literature
| S-EPMC3037600 | biostudies-literature
| S-EPMC2846020 | biostudies-literature
| S-EPMC2386513 | biostudies-literature
| S-EPMC6351171 | biostudies-literature
| S-EPMC5613674 | biostudies-literature