Comparison of triacylglycerol synthesis in rat brown and white adipocytes. Effects of hypothyroidism and streptozotocin-diabetes on enzyme activities and metabolic fluxes.
Ontology highlight
ABSTRACT: 1. Adipocytes were isolated from the interscapular brown fat and the epididymal white fat of normal, streptozotocin-diabetic and hypothyroid rats. 2. Measurements were made of the maximum rate of triacylglycerol synthesis by monitoring the incorporation of [U-14C]glucose into acylglycerol glycerol in the presence of palmitate (1 mM) and insulin (4 nM) and of the activities of the following triacylglycerol-synthesizing enzymes: fatty acyl-CoA synthetase (FAS), mitochondrial and microsomal forms of glycerolphosphate acyltransferase (GPAT), dihydroxyacetonephosphate acyltransferase (DHAPAT), monoacylglycerol phosphate acyltransferase (MGPAT), Mg2+-dependent phosphatidate phosphohydrolase (PPH) and diacylglycerol acyltransferase (DGAT). 3. FAS activity in brown adipocytes was predominantly localized in the mitochondrial fraction, whereas a microsomal localization of this enzyme predominated in white adipocytes. Subcellular distributions of the other enzyme activities in brown adipocytes were similar to those shown previously with white adipocytes [Saggerson, Carpenter, Cheng & Sooranna (1980) Biochem. J. 190, 183-189]. 4. Relative to cell DNA, brown adipocytes had lower activities of triacylglycerol-synthesizing enzymes and showed lower rates of metabolic flux into acylglycerols than did white adipocytes isolated from the same animals. 5. Diabetes decreased both metabolic flux into acylglycerols and the activities of triacylglycerol-synthesizing enzymes in white adipocytes. By contrast, although diabetes decreased metabolic flux into brown-adipocyte acylglycerols by 80%, there were no decreases in the activities of triacylglycerol-synthesizing enzymes, and the activity of PPH was significantly increased. 6. Hypothyroidism increased metabolic flux into acylglycerols in both cell types, and increased activities of all triacylglycerol-synthesizing enzymes in brown adipocytes. By contrast, in white adipocytes, although hypothyroidism increased the activities of FAS, microsomal GPAT and DGAT, this condition decreased the activities of mitochondrial GPAT and PPH. 7. It was calculated that the maximum capabilities for fatty acid oxidation and esterification are approximately equal in brown adipocytes. In white adipocytes esterification is predominant by approx. 100-fold. 8. Diabetes almost abolished incorporation of [U-14C]glucose into fatty acids in both adipocyte types. Hypothyroidism increased fatty acid synthesis in white and brown adipocytes by 50% and 1000% respectively.
SUBMITTER: Baht HS
PROVIDER: S-EPMC1148859 | biostudies-other | 1988 Mar
REPOSITORIES: biostudies-other
ACCESS DATA