Unknown

Dataset Information

0

Demonstration of calcium-dependent phospholipase A2 activity in membrane preparation of rabbit neutrophils. Absence of activation by fMet-Leu-Phe, phorbol 12-myristate 13-acetate and A-kinase.


ABSTRACT: The presence of a phospholipase A2 (PLA2) activity in rabbit neutrophil membrane preparation that is able to release [1-14C]oleic acid from labelled Escherichia coli has been demonstrated. The activity is critically dependent on the free calcium concentration and marginally stimulated by GTP gamma S. More than 80% of maximal activity is reached at 10 microM-Ca2+. The chemotactic factor, fMet-Leu-Phe, does not stimulate the PLA2 activity in this membrane preparation. Pretreatment of the membrane preparation, under various experimental conditions, or intact cells, before isolation of the membrane with phorbol 12-myristate 13-acetate (PMA), does not affect PLA2 activity. Addition of the catalytic unit of cyclic AMP-dependent kinase to membrane preparation has no effect on PLA2 activity. Pretreatment of the intact neutrophil with dibutyryl-cAMP before isolation of the membrane produces a small but consistent increase in PLA2 activity. The activity of PLA2 in membrane isolated from cells treated with the protein kinase inhibitor 1-(5-isoquinolinesulphonyl)-2-methyl piperazine dihydrochloride (H-7) is significantly decreased. Furthermore, although the addition of PMA to intact rabbit neutrophils has no effect on the release of [3H]arachidonic acid from prelabelled cells, it potentiates significantly the release produced by the calcium ionophore A23187. This potentiation is not due to an inhibition of the acyltransferase activity. H-7 inhibits the basal release of arachidonic acid but does not inhibit the potentiation by PMA. These results suggest several points. (1) fMet-Leu-Phe does not stimulate PLA2 directly, and its ability to release arachidonic acid in intact neutrophils is mediated through its action on phospholipase C. (2) The potentiating effect of PMA on A23187-induced arachidonic acid release is most likely due to PMA affecting either the environment of PLA2 and/or altering the organization of membrane phospholipids in such a way as to increase their susceptibility to hydrolysis. (3) The intracellular level of cyclic AMP probably does not directly affect the activity of PLA2.

SUBMITTER: Matsumoto T 

PROVIDER: S-EPMC1148861 | biostudies-other | 1988 Mar

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6463336 | biostudies-literature
| S-EPMC4396138 | biostudies-literature
| S-EPMC1130747 | biostudies-other
| S-EPMC9496763 | biostudies-literature
| S-EPMC10932471 | biostudies-literature
| S-EPMC1147595 | biostudies-other
2020-11-30 | GSE155459 | GEO
| S-EPMC4332032 | biostudies-literature
| S-EPMC4519294 | biostudies-literature
2017-12-01 | GSE107522 | GEO