Malate dehydrogenases in phototrophic purple bacteria. Thermal stability, amino acid composition and immunological properties.
Ontology highlight
ABSTRACT: Purified malate dehydrogenases from four species of non-sulphur purple phototrophic bacteria were examined for their heat-stability, amino acid composition and antigenic relationships. Malate dehydrogenase from Rhodospirillum rubrum, Rhodobacter capsulatus and Rhodomicrobium vannielii (which are all tetrameric proteins) had an unusually high glycine content, but the enzyme from Rhodocyclus purpureus (which is a dimer) did not. R. rubrum malate dehydrogenase was extremely heat-stable relative to the other enzymes, withstanding 65 degrees C for over 1 h with no loss of activity. By contrast, malate dehydrogenase from R. vannielii lost activity above 35 degrees C, and that from R. capsulatus above 40 degrees C. Amino acid compositional relatedness and immunological studies indicated that tetrameric phototrophic-bacterial malate dehydrogenases were highly related to one another, but only distantly related to the tetrameric enzyme from Bacillus. This suggests that, despite differences in their thermal properties, the tetrameric malate dehydrogenases of non-sulphur purple bacteria constitute a distinct biochemical class of this catalyst.
SUBMITTER: Tayeh MA
PROVIDER: S-EPMC1149184 | biostudies-other | 1988 Jun
REPOSITORIES: biostudies-other
ACCESS DATA