Human cystatin C. role of the N-terminal segment in the inhibition of human cysteine proteinases and in its inactivation by leucocyte elastase.
Ontology highlight
ABSTRACT: Leucocyte elastase in catalytic amounts was observed to rapidly cleave the Val-10-Gly-11 bond of the human cysteine-proteinase inhibitor cystatin C at neutral pH. The resulting modified inhibitor had size and amino acid composition consistent with a cystatin C molecule devoid of the N-terminal Ser-1-Val-10 decapeptide. Leucocyte-elastase-modified cystatin C had more than 240-fold lower affinity than native cystatin C for papain. Removal of the N-terminal decapeptide of human cystatin C also decreased inhibition of human cathepsins B and L by three orders of magnitude, but decreased inhibition of cathepsin H by only 5-fold. A tripeptidyldiazomethane analogue of of the N-terminal portion of cystatin C was a good inhibitor of cathepsins B and L but a poor inhibitor of cathepsin H. It therefore appears that amino acid side chains of the N-terminal segment of cystatin C bind in the substrate-binding pockets of cathepsins B and L but not in those of cathepsin H. It is argued that the N-terminal cystatin C interaction with cathepsin B is physiologically important and hence that leucocyte elastase could have a function as a regulator of extracellular cysteine-proteinase inhibitory activity at sites of inflammation.
SUBMITTER: Abrahamson M
PROVIDER: S-EPMC1149809 | biostudies-other | 1991 Feb
REPOSITORIES: biostudies-other
ACCESS DATA