Degradation of proteins in rat liver mitochondrial outer membrane transplanted into different cell types. Evidence for alternative processing.
Ontology highlight
ABSTRACT: The degradation of proteins in reductively [3H]methylated mitochondrial outer membrane (MOM) transplanted into cells by a poly(ethylene glycol)-mediated process has been studied. The average rate of degradation (t1/2 24-28 h) of MOM proteins transplanted into HTC cells was not the same as for endogenous MOM proteins (t1/2 56 h), mitoplast proteins (t1/2 120 h), plasma membrane proteins (t1/2 approx. 90 h) or cytosol proteins (t1/2 75 h). The degradation of transplanted MOM proteins was inhibited to the same extent (30-45%) as that of endogenous mitochondrial and plasma membrane proteins by leupeptin and NH4Cl. No inhibition of HTC cell cytosol protein degradation by NH4Cl was observed. NH4Cl differentially inhibited the degradation of endogenous MOM and mitoplast protein subunits as shown after sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Proteins in MOM transplanted into tissue culture cells were degraded either with t1/2 24-28 h (MRC-5, B82 and A549 cells) or with t1/2 55-70 h (CHO-K1 and 3T3-L1 cells) similar to that of proteins in MOM transplanted into rat hepatocytes [Evans & Mayer (1983) Biochem. J. 216, 151-161]. The data suggest that membrane protein destruction is but the end part of a fundamental intracellular membrane recognition process.
SUBMITTER: Russell SM
PROVIDER: S-EPMC1153651 | biostudies-other | 1984 Jun
REPOSITORIES: biostudies-other
ACCESS DATA