Photoaffinity labelling of nucleoside-transport proteins in plasma membranes isolated from rat and guinea-pig liver.
Ontology highlight
ABSTRACT: Nitrobenzylthioinosine (NBMPR) was employed as a probe of the nucleoside transporters from rat and guinea-pig liver. Purified liver plasma membranes prepared on self-generating Percoll density gradients exhibited 16-fold (rat) and 10-fold (guinea pig) higher [3H]NBMPR-binding activities than in crude liver homogenates (3.69 and 14.7 pmol/mg of protein for rat and guinea-pig liver membranes respectively, and 0.23 and 1.47 pmol/mg of protein for crude liver homogenates respectively). Binding to membranes from both species was saturable (apparent Kd 0.14 and 0.63 nM for rat and guinea-pig membranes respectively) and inhibited by uridine, adenosine, nitrobenzylthioguanosine (NBTGR) and dilazep. Uridine was an apparent competitive inhibitor of high-affinity NBMPR binding to rat membranes (apparent Ki 1.5 mM). There was a marked species difference with respect to dipyridamole inhibition of NBMPR binding (50% inhibition at 0.2 and greater than 100 microM for guinea-pig and rat respectively). These results are consistent with a role of NBMPR-binding proteins in liver nucleoside transport. Exposure of rat and guinea pig membranes to high-intensity u.v. light in the presence of [3H]NBMPR resulted in the selective radio-labelling of membrane proteins which migrated on sodium dodecyl sulphate/polyacrylamide gels with apparent Mr values in the same range as that of the human erythrocyte nucleoside transporter (45 000-66 000). Covalent labelling of these proteins was abolished when photolysis was performed in the presence of non-radio-active NBTGR as competing ligand.
SUBMITTER: Wu JS
PROVIDER: S-EPMC1153652 | biostudies-other | 1984 Jun
REPOSITORIES: biostudies-other
ACCESS DATA