The role of substrate supply in the regulation of cholesterol biosynthesis in rat hepatocytes.
Ontology highlight
ABSTRACT: 1. Compactin, (-)-hydroxycitrate and dexamethasone gave rise to a decrease in the rate of cholesterol production in hepatocytes from fed rats by interfering with the flow of substrate into the sterol biosynthetic pathway. The cells responded to the deficit of biosynthetic sterol by increasing the activity of hydroxymethylglutaryl-CoA reductase (HMG-CoA reductase). 2. Compactin and (-)-hydroxycitrate gave similar results in hepatocytes from rats starved for 24 h but in this case dexamethasone had no significant effect. 3. Exogenous oleate interferes with the production of carbohydrate-derived acetyl-CoA and also gives rise initially to opposing effects on the rate of sterol synthesis and HMG-CoA reductase activity. Over a longer period, however, oleate itself was capable of replacing carbohydrate as the major source of carbon for sterol synthesis. 4. The increase in HMG-CoA reductase activity observed when liver cells were incubated in the presence of compactin, (-)-hydroxycitrate or oleate could be partially reversed by the simultaneous presence of glucagon. 5. Under some physiological conditions, a deficiency of biosynthetic cholesterol or of a related precursor may lead to an increase in the activity of HMG-CoA reductase.
SUBMITTER: Pullinger CR
PROVIDER: S-EPMC1154270 | biostudies-other | 1983 Mar
REPOSITORIES: biostudies-other
ACCESS DATA