Some factors affecting phosphate transport in a perfused rat heart preparation.
Ontology highlight
ABSTRACT: Pi uptake by a perfused rat heart preparation did not require the presence of any other permeant anion, but was markedly dependent on the extracellular Na+ concentration and accelerated when tissue oxygenation was inadequate. Pi efflux was also independent of other permeant anions, but apparently varied with the intracellular Na+ concentration. Cardiac Pi efflux was not sensitive to a number of inhibitors that clock Cl- movement in heart and other tissues. Both uptake and efflux apparently proceed via a reversible electroneutral co-transport system linked to the transmembrane Na+ gradient. Pi uptake was independent of cardiac work load, but the efflux rate was sharply accelerated after an increase in aortic pressure development, with a slow return towards basal values during sustained periods of high work output. An inverted biphasic effect on the efflux rate was observed after a reduction in cardiac work load. Mild hypoxia and respiratory and metabolic acidosis each resulted in a transient acceleration of Pi efflux followed by a return towards basal values during prolonged exposure to the stimulus, whereas respiratory and metabolic alkalosis produced a similar but inverted response. The origin of these phasic effects on Pi efflux remains to be identified at present.
SUBMITTER: Medina G
PROVIDER: S-EPMC1161871 | biostudies-other | 1980 May
REPOSITORIES: biostudies-other
ACCESS DATA