Unknown

Dataset Information

0

Resistance of the peptidyltransferase centre of rabbit ribosomes to attack by nucleases and proteinases.


ABSTRACT: Larger ribosomal subparticles (L-subparticles) of rabbit ribosomes were treated with either ribonucleases (I or T1) or proteinases (trypsin or chymotrypsin), and their capacity to function in poly(U)-directed polyphenylalanine synthesis and in the puromycin reaction was investigated. The effects of pretreatment of L-subparticles on the reconstruction of active subparticles from core-particles derived by treatment with 2.75 M-NH4Cl/69 mM-MgCl2 and split-protein fractions were also examined. The protein moiety of proteinase-treated L-subparticles was analysed by one-dimensional sodium dodecyl sulphate/polyacrylamide- and two-dimensional polyacrylamide-gel electrophoresis. The introduction of 16--100 scissions in the RNA moiety had no effect on the activity of the L-subparticles in polyphenylalanine synthesis, and there was no effect on the stability of L-subparticles to high-salt shock treatment and a marginal effect on the reconstruction of L-subparticles from high-salt-shock core-particles and split-protein fractions. In contrast, L-subparticles treated with low amounts of trypsin (0.56 ng of trypsin/microgram of L-subparticle) were inactive in polyphenylalanine synthesis, and their capacity to function in partial-reconstruction experiments was diminished. Activity in the puromycin reaction was increased by 70% as a result of trypsin treatment (280 ng of trypsin/microgram of L-subparticle). At least two of the acidic proteins implicated in the translocation function were not affected by trypsin treatment. Trypsin-treated L-subparticles had lost their capacity to bind the smaller ribosomal subparticle (S-subparticle). The protein(s) needed for S-subparticle binding were shown to be present in high-salt-shock cores. At least six proteins associated with the core-particles were attack during trypsin treatment of L-subparticles. An examination of L-subparticles isolated from trypsin-treated polyribosomes showed that the amount of trypsin necessary to decrease the activity of the subparticle by 50% was about twice that needed in the treatment of L-subparticles alone. The largest protein of rabbit L-subparticles (approx. 51 000 daltons) was cleaved in a stepwise fashion by trypsin to fragments of approx. 40 000 daltons. This protein was also cleaved by chymotrypsin.

SUBMITTER: Cox RA 

PROVIDER: S-EPMC1162079 | biostudies-other | 1980 Jul

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3113902 | biostudies-literature
| S-EPMC1164268 | biostudies-other
| S-EPMC1164269 | biostudies-other
| S-EPMC7454438 | biostudies-literature
2021-05-16 | GSE114545 | GEO
| S-EPMC1184166 | biostudies-other
| S-EPMC6359950 | biostudies-literature
| S-EPMC1187112 | biostudies-other
| S-EPMC6271724 | biostudies-literature
| EMPIAR-11593 | biostudies-other