Sulphate transport by H+ symport and by the dicarboxylate carrier in mitochondria.
Ontology highlight
ABSTRACT: 1. Swelling of mitochondria was induced in non-respiring mitochondria by 30 mM or more Na2SO4 or by respiration in the presence of K2SO4. Respiration-drive swelling resulted in loss of respiratory control. Sulphate, when present at 10 mM concentration, promoted the release of accumulated Ca2+. 2. Swelling was prevented by N-ethylmaleimide and formaldehyde, known inhibitors of the phosphate carrier. Sulphate-induced swelling was more sensitive to the inhibitors than was phosphate-induced swelling. At lower concentration of sulphate, 5 mM, an alkalinisation of the medium was observed in addition of sulphate, indicating H+-sulphate symport. There was competition between sulphate and phosphate for transport by this mechanism. It is suggested that sulphate may be transported, though at a comparatively slow rate, by the phosphate carrier. 3. Uptake of sulphate was stimulated when preceded by energy-dependent accumulation of Ba2+, especially when acetate was also present, indicating precipitation of BaSO4 in the matrix. Using this system the influx of sulphate was studied at lower concentrations, 10 mM or less. the contributions of the H+ symporter (sensitive to N-ethylmaleimide) and the dicarboxylate carrier (sensitive to butylmalonate) could then be studied. The dicarboxylate carrier had a lower Km and was mainly responsible for sulphate transport at lower concentration range. At 10 mM-sulphate the transport rates by the two systems appeared to be similar; at still higher concentrations the H+ symporter may become more important.
SUBMITTER: Saris NE
PROVIDER: S-EPMC1162417 | biostudies-other | 1980 Dec
REPOSITORIES: biostudies-other
ACCESS DATA