Cyanide-insensitive oxidation of ascorbate + NNN'N'-tetramethyl-p-phenylenediamine mixture by mung-bean (Phaseolus aureus) mitochondria. An energy-linked function.
Ontology highlight
ABSTRACT: Freshly prepared washed or purified mung-bean (Phaseolus aureus) mitochondria utilize oxygen with ascorbate/tetramethyl-p-phenylenediamine mixture as electron donor in the presence of KCN. ATP control of the oxygen uptake can be observed with very fresh mitochondria. The electron flow, which is inhibited by antimycin A, salicylhydroxamic acid or octylguanidine, takes place by reversed electron transport through phosphorylation site II and thence to oxygen through the cyanide-insensitive pathway. Oligomycin and low concentrations of uncoupler partially inhibit the oxygen uptake in a manner similar to that observed for other energy-linked functions of plant mitochondria. An antimycin A-insensitive oxygen uptake occurs if high concentrations of uncoupler are used, indicating that the pathway of electron flow has been altered. The process of cyanide-insensitive ascorbate oxidation is self-starting, and, since it occurs in the presence of oligomycin, it is concluded that the reaction can be energized by a single energy-conservation site associated with the cyanide-insensitive oxidase pathway.
SUBMITTER: Wilson SB
PROVIDER: S-EPMC1186212 | biostudies-other | 1978 Oct
REPOSITORIES: biostudies-other
ACCESS DATA