Unknown

Dataset Information

0

A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-->6)-beta-glucan synthesis.


ABSTRACT: Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1-->6)-beta-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1-->6)-glucan. Structural analysis of the (1-->6)-beta-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a similar proportion of (1-->6)- and (1-->3)-linkages. Genetic interactions among cells harboring mutations at the KRE11, KRE6 and KRE1 loci indicate lethality of kre11 kre6 double mutants and that kre11 is epistatic to kre1, with both gene products required to produce the mature glucan polymer at wild-type levels. Analysis of these KRE genes should extend knowledge of the beta-glucan biosynthetic pathway, and of cell wall synthesis in yeast.

SUBMITTER: Brown JL 

PROVIDER: S-EPMC1205404 | biostudies-other | 1993 Apr

REPOSITORIES: biostudies-other

altmetric image

Publications

A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1-->6)-beta-glucan synthesis.

Brown J L JL   Kossaczka Z Z   Jiang B B   Bussey H H  

Genetics 19930401 4


Recessive mutations leading to killer resistance identify the KRE9, KRE10 and KRE11 genes. Mutations in both the KRE9 and KRE11 genes lead to reduced levels of (1-->6)-beta-glucan in the yeast cell wall. The KRE11 gene encodes a putative 63-kD cytoplasmic protein, and disruption of the KRE11 locus leads to a 50% reduced level of cell wall (1-->6)-glucan. Structural analysis of the (1-->6)-beta-glucan remaining in a kre11 mutant indicates a polymer smaller in size than wild type, but containing a  ...[more]

Similar Datasets

| S-EPMC2679440 | biostudies-literature
| S-EPMC4385797 | biostudies-literature
| S-EPMC2584752 | biostudies-literature
| S-EPMC6531845 | biostudies-literature
| S-EPMC7491007 | biostudies-literature
| S-EPMC6688994 | biostudies-literature
| S-EPMC94196 | biostudies-literature
| S-EPMC6089990 | biostudies-literature
| S-EPMC1194906 | biostudies-literature
| S-EPMC7912047 | biostudies-literature