Roles of insulin, guanosine 5'-[gamma-thio]triphosphate and phorbol 12-myristate 13-acetate in signalling pathways of GLUT4 translocation.
Ontology highlight
ABSTRACT: Insulin, guanosine 5'-[gamma-thio]triphosphate (GTP[S] and phorbol 12-myristate 13-acetate (PMA) trigger the translocation of Gl UT4 (type 4 glucose transporter; insulin-sensitive glucose transporter) from an intracellular pool to the cell surface. We have developed a highly sensitive and quantitative method to detect GLUT4 immunologically on the surface of intact 3T3-L1 adipocytes and Chinese hamster ovary (CHO) cells, using c-myc epitope-tagged GLUT4 (GLUT4myc). We examined the roles of insulin, GTP[S] and PMA in the signalling pathways of GLUT4 translocation in the CHO cell system. Among small molecular GTP-binding proteins, ras, rab3D, rad and rho seem to be candidates as signal transmitters of insulin-stimulated GLUT4 translocation. Overexpression of wild-type H-ras and the dominant negative mutant H-rass17N in our cell system respectively enhanced and blocked insulin-stimulated activation of mitogen-activated protein kinase, but did not affect insulin-stimulated GLUT4 translocation. Overexpression of rab3D or rad in the cells did not affect GLUT4 translocation triggered by insulin, GTP[S] or PMA. Treatment with Botulinum C3 exoenzyme, a specific inhibitor of rho, had no effect on GLUT4 translocation induced by insulin, GTP[S] or PMA. Therefore these small molecular GTP-binding proteins are not likely to be involved in GLUT4 translocation. In addition, insulin, GTP[S] and PMA apparently stimulate GLUT4 translocation through independent pathways.
SUBMITTER: Todaka M
PROVIDER: S-EPMC1217288 | biostudies-other | 1996 May
REPOSITORIES: biostudies-other
ACCESS DATA