Enzymic and molecular characterization of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Synechococcus PCC 7942: resistance of the enzyme to hydrogen peroxide.
Ontology highlight
ABSTRACT: NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been purified to electrophoretic homogeneity from Synechococcus PCC 7942 cells. The native enzyme had a molecular mass of 160 kDa and consisted of four subunits with a molecular mass of 41 kDa. The activity was 6-fold higher with NADPH than with NADH; the apparent Km values for NADPH and NADH were 62 +/- 4.5 and 420 +/- 10.5 microM respectively. The gene encoding NADP-dependent GAPDH was cloned from the chromosomal DNA of Synechococcus 7942. A 1140 bp open reading frame, encoding an enzyme of 380 amino acid residues (approx.molecular mass of 41.3 kDa) was observed. The deduced amino acid sequence of the gene had a greater sequence similarity to the NADP-dependent and chloroplastic form than to the NAD-dependent and cytosolic form. The Synechococcus 7942 enzyme lacked one of the cysteines involved in the light-dependent regulation of the chloroplast enzymes of higher plants. The recombinant enzyme expressed in Escherichia coli as well as the native enzyme purified from Synechococcus 7942 cells were resistant to 1 mM H2O2.
SUBMITTER: Tamoi M
PROVIDER: S-EPMC1217402 | biostudies-other | 1996 Jun
REPOSITORIES: biostudies-other
ACCESS DATA