Intracellular localization of the PDE4A cAMP-specific phosphodiesterase splice variant RD1 (RNPDE4A1A) in stably transfected human thyroid carcinoma FTC cell lines.
Ontology highlight
ABSTRACT: Cells of two human follicular thyroid carcinoma cell lines (FTC133, FTC236) were stably transfected with a cDNA encoding the PDE4A cAMP-specific phosphodiesterase (PDE) splice variant RD1 (RNPDE4A1A) so as to generate the cloned cell lines, FTC133A and FTC236A. This allowed the expression of a novel rolipram-inhibited cAMP-specific PDE activity in these cells. Unlike the parent cell lines in which Ca2+/calmodulin caused a profound activation (approx. 3-4-fold) of homogenate PDE activity, no such stimulation was evident in the RD1-expressing cell lines, indicating loss of PDE1 activity. Reverse transcriptase-PCR analysis indicated that this was due to the down-regulation of the PDE1C isoform. The novel PDE4 activity in transfected cells was located exclusively in the membrane fraction, as was immunoreactive RD1. Low concentrations of the detergent Triton X-100, but not high NaCl concentrations, allowed RD1 to be solubilized. Laser scanning confocal immunofluorescence analyses identified RD1 immunoreactivity in a discrete perinuclear region of these RD1-expressing transfected cell lines. A similar pattern of labelling was observed using the antiserum Tex1, which specifically identified the Golgi apparatus. Treatment of FTC133A cells with the Golgi-perturbing agents monensin and brefeldin A led to a similar redistribution of immunoreactive species detected using both the Tex1 and anti-RD1 antisera. It is suggested that the PDE4A splice variant RD1 contains a membrane-association signal which allows the targeted expression of RD1 within the Golgi complex of these human follicular thyroid carcinoma cell lines.
SUBMITTER: Pooley L
PROVIDER: S-EPMC1218052 | biostudies-other | 1997 Jan
REPOSITORIES: biostudies-other
ACCESS DATA