Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper).
Ontology highlight
ABSTRACT: Echicetin, a heterodimeric protein from the venom of Echis carinatus, binds to platelet glycoprotein Ib (GPIb) and so inhibits platelet aggregation or agglutination induced by various platelet agonists acting via GPIb. The amino acid sequence of the beta subunit of echicetin has been reported and found to belong to the recently identified snake venom subclass of the C-type lectin protein family. Echicetin alpha and beta subunits were purified. N-terminal sequence analysis provided direct evidence that the protein purified was echicetin. The paper presents the complete amino acid sequence of the alpha subunit and computer models of the alpha and beta subunits. The sequence of alpha echicetin is highly similar to the alpha and beta chains of various heterodimeric and homodimeric C-type lectins. Neither of the fully reduced and alkylated alpha or beta subunits of echicetin inhibited the platelet agglutination induced by von Willebrand factor-ristocetin or alpha-thrombin. Earlier reports about the inhibitory activity of reduced and alkylated echicetin beta subunit might have been due to partial reduction of the protein.
Project description:we used a combination of bottom-up (BU) and top-down (TD) proteomics approaches to identify and characterize venom protein compositions of Echis carinatus sochureki (ECS) from three different Iranian populations.
Project description:Snakebite is a socio-economic problem in tropical countries and it is exacerbated by geographical venom variation of snakes. We investigated on venom variation in geographically distinct populations of Echis carinatus from three ecologically distinct regions: Tamil Nadu (ECVTN), Goa (ECVGO), and Rajasthan (ECVRAJ). Venom was fractionated by RP-HPLC, combined with SDS-PAGE, and subjected to tandem mass spectrometry. Toxins were identified, and their relative abundance was estimated. Using NCBI database of Echis genus, we queried the MS/MS spectra, and found 69, 38 and 38 proteins in ECVTN, ECVGO and ECVRAJ respectively, belonging to 8-10 different toxin families. The differences in the venom profiles were due to change in the relative composition of the toxin families. Snake venom metalloproteinase (svMP), Snaclecs and Phospholipase A2 (PLA2) were the major venom components in all the venoms. Heteromeric Disintegrins were found in ECVTN and absent in other venoms. ECVRAJ showed higher abundance of low-molecular-weight (>30 kDa) proteins than ECVTN and ECVGO. Cysteine-rich venom protein (CRISP) was highest in ECVRAJ (7.34%), followed by ECVTN (0.01%) and in ECVGO, it was not detected. These findings highlight the need for evaluating the efficacy of the polyvalent anti-venom to neutralize the toxins from geographically distinct venoms of E. carinatus.
Project description:Saw-scaled or carpet vipers (genus Echis) are considered to cause a higher global snakebite mortality than any other snake. Echis carinatus sochureki (ECS) is a widely distributed snake species, also found across the thirteen provinces of Iran, where it is assumed to be responsible for the most snakebite envenomings. Here, we collected the Iranian specimens of ECS from three different geographically distinct populations, investigated food habits, and performed toxicity assessment and venom proteome profiling to better understand saw-scaled viper life. Our results show that the prey items most commonly found in all populations were arthropods, with scorpions from the family Buthidae particularly well represented. LD50 (median lethal dose) values of the crude venom demonstrate highly comparable venom toxicities in mammals. Consistent with this finding, venom characterization via top-down and bottom-up proteomics, applied to both crude venoms and size-exclusion chromatographic fractions, revealed highly comparable venom compositions among the different populations. By combining all proteomics data, we identified 22 protein families from 102 liquid chromatography and tandem mass spectrometry (LC-MS/MS) raw files, including the most abundant snake venom metalloproteinases (SVMPs, 29-34%); phospholipase A2 (PLA2s, 26-31%); snake venom serine proteinases (SVSPs, 11-12%); l-amino acid oxidases (LAOs, 8-11%), C-type lectins/lectin-like (CTLs, 7-9%) protein families, and many newly detected ones, e.g., renin-like aspartic proteases (RLAPs), fibroblast growth factors (FGFs), peptidyl-prolyl cis-trans isomerases (PPIs), and venom vasodilator peptides (VVPs). Furthermore, we identified and characterized methylated, acetylated, and oxidized proteoforms relating to the PLA2 and disintegrin toxin families and the site of their modifications. It thus seems that post-translational modifications (PTMs) of toxins, particularly target lysine residues, may play an essential role in the structural and functional properties of venom proteins and might be able to influence the therapeutic response of antivenoms, to be investigated in future studies.
Project description:Several studies have shown that Asp-49 is the residue that controls calcium binding in, and so plays a critical role in the calcium-mediated activation of, low-M(r) group I-III phospholipases A2 (PLA2s). The present paper provides experimental evidence that Asp-49 is not an absolute prerequisite for the enzymic activity of PLA2s, and that proteins with amino acid(s) other than Asp at position 49 can exhibit significant phospholipase activity. The purification, complete amino acid sequence and characterization of ecarpholin S, a PLA2 from Echis carinatus sochureki (saw-scaled viper) venom, is described. This single-chain, 122-amino-acid, basic (pI 7.9) protein is a group II PLA2. Although Asp-49 is replaced by Ser and Tyr-28 by Phe (both of these positions being involved in the Ca(2+)-binding site of PLA2s), the lipolysis of soybean phosphatidylcholine and egg yolk in the presence of 10 mM CaCl2 was 1.5 times and 2.9 times greater respectively with ecarpholin S than with recombinant human group II PLA2. The Ca(2+)-dependencies of the enzymic activities of ecarpholin S and rPLA2 were found to be similar. Ecarpholin S added to washed platelets induced aggregation; the presence of Ca2+ was a prerequisite for this platelet-aggregating effect. Computer modelling of the Ca(2+)-binding site of Ser-49 PLA2 compared with the Asp-49 and Lys-49 forms, for which crystallographic data exist, shows that the Ca(2+)-binding site is sterically blocked by Lys-49 but not by Ser-49; in the latter, the Ser hydroxy group may replace the Asp carboxylate in stabilization of Ca2+ binding. Sequence comparisons of ecarpholin S and other low-M(r) PLA2s predicts the presence of a Ser-49 group in the protein family of low-M(r) PLA2s that is distinct from the Asp-49 and Lys-49 groups.
Project description:BackgroundVenom variation occurs at all taxonomical levels and can impact significantly upon the clinical manifestations and efficacy of antivenom therapy following snakebite. Variation in snake venom composition is thought to be subject to strong natural selection as a result of adaptation towards specific diets. Members of the medically important genus Echis exhibit considerable variation in venom composition, which has been demonstrated to co-evolve with evolutionary shifts in diet. We adopt a venom gland transcriptome approach in order to investigate the diversity of toxins in the genus and elucidate the mechanisms which result in prey-specific adaptations of venom composition.ResultsVenom gland transcriptomes were created for E. pyramidum leakeyi, E. coloratus and E. carinatus sochureki by sequencing approximately 1000 expressed sequence tags from venom gland cDNA libraries. A standardised methodology allowed a comprehensive intra-genus comparison of the venom gland profiles to be undertaken, including the previously described E. ocellatus transcriptome. Blast annotation revealed the presence of snake venom metalloproteinases, C-type lectins, group II phopholipases A2, serine proteases, L-amino oxidases and growth factors in all transcriptomes throughout the genus. Transcripts encoding disintegrins, cysteine-rich secretory proteins and hyaluronidases were obtained from at least one, but not all, species. A representative group of novel venom transcripts exhibiting similarity to lysosomal acid lipase were identified from the E. coloratus transcriptome, whilst novel metallopeptidases exhibiting similarity to neprilysin and dipeptidyl peptidase III were identified from E. p. leakeyi and E. coloratus respectively.ConclusionThe comparison of Echis venom gland transcriptomes revealed substantial intrageneric venom variation in representations and cluster numbers of the most abundant venom toxin families. The expression profiles of established toxin groups exhibit little obvious association with venom-related adaptations to diet described from this genus. We suggest therefore that alterations in isoform diversity or transcript expression levels within the major venom protein families are likely to be responsible for prey specificity, rather than differences in the representation of entire toxin families or the recruitment of novel toxin families, although the recruitment of lysosomal acid lipase as a response to vertebrate feeding cannot be excluded. Evidence of marked intrageneric venom variation within the medically important genus Echis strongly advocates further investigations into the medical significance of venom variation in this genus and its impact upon antivenom therapy.
Project description:BackgroundIn West Africa, envenoming by saw-scaled or carpet vipers (Echis ocellatus) causes great morbidity and mortality, but there is a crisis in supply of effective and affordable antivenom (ISRCTN01257358).MethodsIn a randomised, double-blind, controlled, non-inferiority trial, "EchiTAb Plus-ICP" (ET-Plus) equine antivenom made by Instituto Clodomiro Picado was compared to "EchiTAb G" (ET-G) ovine antivenom made by MicroPharm, which is the standard of care in Nigeria and was developed from the original EchiTAb-Fab introduced in 1998. Both are caprylic acid purified whole IgG antivenoms. ET-G is monospecific for Echis ocellatus antivenom (initial dose 1 vial) and ET-Plus is polyspecific for E. ocellatus, Naja nigricollis and Bitis arietans (initial dose 3 vials). Both had been screened by pre-clinical and preliminary clinical dose-finding and safety studies. Patients who presented with incoagulable blood, indicative of systemic envenoming by E. ocellatus, were recruited in Kaltungo, north-eastern Nigeria. Those eligible and consenting were randomly allocated with equal probability to receive ET-Plus or ET-G. The primary outcome was permanent restoration of blood coagulability 6 hours after the start of treatment, assessed by a simple whole blood clotting test repeated 6, 12, 18, 24 and 48 hr after treatment. Secondary (safety) outcomes were the incidences of anaphylactic, pyrogenic and late serum sickness-type antivenom reactions.FindingsInitial doses permanently restored blood coagulability at 6 hours in 161/194 (83.0%) of ET-Plus and 156/206 (75.7%) of ET-G treated patients (Relative Risk [RR] 1.10 one-sided 95% CI lower limit 1.01; P = 0.05). ET-Plus caused early reactions on more occasions than did ET-G [50/194 (25.8%) and 39/206 (18.9%) respectively RR (1.36 one-sided 95% CI 1.86 upper limit; P = 0.06). These reactions were classified as severe in 21 (10.8%) and 11 (5.3%) of patients, respectively.ConclusionAt these doses, ET-Plus was slightly more effective but ET-G was slightly safer. Both are recommended for treating E. ocellatus envenoming in Nigeria.Trial registrationCurrent Controlled Trials ISRCTN01257358.
Project description:Feae's viper Azemipos feae belongs to the Azemiopinae subfamily of the Viperidae family. The effects of Viperidae venoms are mostly coagulopathic with limited neurotoxicity manifested by phospholipases A2. From A. feae venom, we have earlier isolated azemiopsin, a novel neurotoxin inhibiting the nicotinic acetylcholine receptor. To characterize other A. feae toxins, we applied label-free quantitative proteomics, which revealed 120 unique proteins, the most abundant being serine proteinases and phospholipases A2. In total, toxins representing 14 families were identified, among which bradykinin-potentiating peptides with unique amino acid sequences possessed biological activity in vivo. The proteomic analysis revealed also basal (commonly known as non-conventional) three-finger toxins belonging to the group of those possessing neurotoxic activity. This is the first indication of the presence of three-finger neurotoxins in viper venom. In parallel, the transcriptomic analysis of venom gland performed by Illumina next-generation sequencing further revealed 206 putative venom transcripts. Together, the study unveiled the venom proteome and venom gland transciptome of A. feae, which in general resemble those of other snakes from the Viperidae family. However, new toxins not found earlier in viper venom and including three-finger toxins and unusual bradykinin-potentiating peptides were discovered.
Project description:Russell's viper bites are potentially fatal from severe bleeding, renal failure and capillary leakage. Snake venom metalloproteinases (SVMPs) are attributed to these effects. In addition to specific antivenom therapy, endogenous inhibitors from snakes are of interest in studies of new treatment modalities for neutralization of the effect of toxins. Two major snake venom metalloproteinases (SVMPs): RVV-X and Daborhagin were purified from Myanmar Russell's viper venom using a new purification strategy. Using the Next Generation Sequencing (NGS) approach to explore the Myanmar RV venom gland transcriptome, mRNAs of novel tripeptide SVMP inhibitors (SVMPIs) were discovered. Two novel endogenous tripeptides, pERW and pEKW were identified and isolated from the crude venom. Both purified SVMPs showed caseinolytic activity. Additionally, RVV-X displayed specific proteolytic activity towards gelatin and Daborhagin showed potent fibrinogenolytic activity. These activities were inhibited by metal chelators. Notably, the synthetic peptide inhibitors, pERW and pEKW, completely inhibit the gelatinolytic and fibrinogenolytic activities of respective SVMPs at 5 mM concentration. These complete inhibitory effects suggest that these tripeptides deserve further study for development of a therapeutic candidate for Russell's viper envenomation.
Project description:Ophiotaenia echidis n. sp. (Cestoda: Proteocephalidae) is described from the intestine of one of the world's deadliest snakes, the saw-scaled viper Echis carinatus sochureki Stemmler (Ophidia: Viperidae) in the United Arab Emirates. The new species differs from other species of the non-monophyletic Ophiotaenia by the position of testes in two longitudinal lines on both sides of the uterus, and by the large size of an embryophore (diameter of 44-55 μm versus less than 40 μm in other species). Phylogenetic reconstructions based on lsrDNA and concatenated lsrDNA + COI datasets place the new species among proteocephalids from unrelated zoogeographical realms but mostly infecting venomous snakes. In all analyses, O. echidis n. sp. exhibited a strongly supported sister relationship with O. lapata Rambeloson, Ranaivoson et de Chambrier, 2012, a parasite of a pseudoxyrhophiid snake endemic to Madagascar. Despite a shared close evolutionary history between these taxa, morphological synapomorphies remain unclear, which impedes the erection of a new genus to accommodate them. A list of the 71 tapeworms of the former, non-monophyletic subfamily Proteocephalinae, parasitising snakes and lizards, including species inquirendae, and the phylogenetically closely related Thaumasioscolex didelphidis from opossum, with selected characteristics, is also provided, together with a checklist of helminth parasites reported from E. carinatus.
Project description:Snakebites are a major neglected tropical disease responsible for as many as 95000 deaths every year worldwide. Viper venom serine proteases disrupt haemostasis of prey and victims by affecting various stages of the blood coagulation system. A better understanding of their sequence, structure, function and phylogenetic relationships will improve the knowledge on the pathological conditions and aid in the development of novel therapeutics for treating snakebites. A large dataset for all available viper venom serine proteases was developed and analysed to study various features of these enzymes. Despite the large number of venom serine protease sequences available, only a small proportion of these have been functionally characterised. Although, they share some of the common features such as a C-terminal extension, GWG motif and disulphide linkages, they vary widely between each other in features such as isoelectric points, potential N-glycosylation sites and functional characteristics. Some of the serine proteases contain substitutions for one or more of the critical residues in catalytic triad or primary specificity pockets. Phylogenetic analysis clustered all the sequences in three major groups. The sequences with substitutions in catalytic triad or specificity pocket clustered together in separate groups. Our study provides the most complete information on viper venom serine proteases to date and improves the current knowledge on the sequence, structure, function and phylogenetic relationships of these enzymes. This collective analysis of venom serine proteases will help in understanding the complexity of envenomation and potential therapeutic avenues.