Cloning and characterization of two glutathione S-transferases from a DDT-resistant strain of Anopheles gambiae.
Ontology highlight
ABSTRACT: Two cDNA species, aggst1-5 and aggst1-6, comprising the entire coding region of two distinct glutathione S-transferases (GSTs) have been isolated from a 1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane (DDT) resistant strain (ZANDS) of Anopheles gambiae. The nucleotide sequences of these cDNA species share 80.2% identity and their derived amino acid sequences are 82.3% similar. They have been classified as insect class I GSTs on the basis of their high sequence similarity to class I GSTs from Drosophila melanogaster and Musca domestica and they are localized to a region of an An. gambiae chromosome known to contain further class I GSTs. The genes aggst1-5 and aggst1-6 were expressed at high levels in Escherichia coli and the recombinant GSTs were purified by affinity chromatography and characterized. Both agGST1-5 and agGST1-6 showed high activity with the substrates 1-chloro-2,4-dinitrobenzene and 1, 2-dichloro-4-nitrobenzene but negligible activity with the mammalian theta class substrates, 1,2-epoxy-3-(4-nitrophenoxy)propane and p-nitrophenyl bromide. Despite their high level of sequence identity, agGST1-5 and agGST1-6 displayed different kinetic properties. Both enzymes were able to metabolize DDT and were localized to a subset of GSTs that, from earlier biochemical studies, are known to be involved in insecticide resistance in An. gambiae. This subset of enzymes is one of three in which the DDT metabolism levels are elevated in resistant insects.
SUBMITTER: Ranson H
PROVIDER: S-EPMC1218406 | biostudies-other | 1997 May
REPOSITORIES: biostudies-other
ACCESS DATA