Subunit interaction of vacuolar H+-pyrophosphatase as determined by high hydrostatic pressure.
Ontology highlight
ABSTRACT: Vacuolar H+-pyrophosphatase (H+-PPase) from etiolated hypocotyls of mung bean (Vigna radiata L.) is a homodimer with a molecular mass of 145 kDa. The vacuolar H+-PPase was subjected to high hydrostatic pressure to investigate its structure and function. The inhibition of H+-PPase activity by high hydrostatic pressure has a pressure-, time- and protein-concentration-dependent manner. The Vmax value of vacuolar H+-PPase was dramatically decreased by pressurization from 293.9 to 70.2 micromol of PPi (pyrophosphate) consumed/h per mg of protein, while the Km value decreased from 0.35 to 0.08 mM, implying that the pressure treatment increased the affinity of PPi to vacuolar H+-PPase but decreased its hydrolysis. The physiological substrate and its analogues enhance high pressure inhibition of vacuolar H+-PPase. The HPLC profile reveals high pressure treatment of H+-PPase provokes the subunit dissociation from an active into inactive form. High hydrostatic pressure also induces the conformational change of vacuolar H+-PPase as determined by spectroscopic techniques. Our results indicate the importance of protein-protein interaction for this novel proton-translocating enzyme. Working models are proposed to interpret the pressure inactivation of vacuolar H+-PPase. We also suggest that association of identical subunits of vacuolar H+-PPase is not random but proceeds in a specific manner.
SUBMITTER: Yang SJ
PROVIDER: S-EPMC1219367 | biostudies-other | 1998 Apr
REPOSITORIES: biostudies-other
ACCESS DATA