Unknown

Dataset Information

0

Partial purification of heparanase activities in Chinese hamster ovary cells: evidence for multiple intracellular heparanases.


ABSTRACT: Heparanases are mammalian endoglycosidases that cleave heparan sulphate glycosaminoglycans from proteoglycan core proteins and degrade them into shorter chains. The enzymes have been proposed to act in a variety of cellular processes, including proteoglycan catabolism, remodelling of basement membranes and release of heparan sulphate-binding ligands from their extracellular storage sites. Additional functions for heparanases may be to generate short heparan sulphate chains that stabilize or activate other proteins. While heparanase activities have been described in a number of tissues and cell lines, it is not known how many different enzymes are responsible for these activities. Our recent studies characterizing the short glycosaminoglycans produced in Chinese hamster ovary (CHO) cells suggested that multiple heparanases are necessary for the formation of the short heparan sulphate chains [Bame and Robson (1997) J. Biol. Chem. 272, 2245-2251]. We examined whether this is the case by purifying heparanase activity from CHO cell homogenates. Based on their ability to bind ion-exchange resins and their elution from gel-filtration columns, four separate heparanase activities were partially purified. All four activities cleave free glycosaminoglycans over a broad pH range of 3.5-6.0 or 6. 5, suggesting that they act in the endosomal/lysosomal pathway. The sizes of the short heparan sulphate chains generated by the partially purified heparanases ranged from 6 to 9 kDa, and for two of the activities the product size is pH-dependent. Three of the four activities degrade proteoglycans as well as the free glycosaminoglycan chain. Interestingly, all four enzymes generate short glycosaminoglycans with a sulphate-rich, modified domain at the non-reducing end of the newly formed chain. Since our previous studies showed that in CHO cells there is also a population of short heparan sulphates with a modified domain at the reducing end of the chain, this suggests that there may be another heparanase in CHO cells that was not purified. Alternatively, our findings suggest that the formation of short heparan sulphate glycosaminoglycans inside CHO cells may be a result of the concerted action of multiple heparanases, and may depend on the proportions of the different enzymes and the environment in which the chains are degraded.

SUBMITTER: Bame KJ 

PROVIDER: S-EPMC1219857 | biostudies-other | 1998 Nov

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC1217008 | biostudies-other
| S-EPMC1221622 | biostudies-other
| S-EPMC3772721 | biostudies-literature
| S-EPMC3103581 | biostudies-literature
| S-EPMC6440468 | biostudies-literature
| S-EPMC7863527 | biostudies-literature
| S-EPMC10287810 | biostudies-literature
| S-EPMC6430115 | biostudies-literature
2011-07-28 | GSE30321 | GEO
2011-07-27 | E-GEOD-30321 | biostudies-arrayexpress