Opposing effects of tumour necrosis factor alpha and hyperosmolarity on Na+/myo-inositol co-transporter mRNA levels and myo-inositol accumulation by 3T3-L1 adipocytes.
Ontology highlight
ABSTRACT: Tumour necrosis factor alpha (TNF-alpha) regulates the transport of myo-inositol in 3T3-L1 adipocytes. Treating 3T3-L1 adipocytes with TNF-alpha decreases Na+/myo-inositol co-transporter (SMIT) mRNA levels and myo-inositol accumulation in a concentration-and time-dependent manner. TNF-alpha decreases the V'max for high-affinity myo-inositol transport with little change in the K'm. Studies with actinomycin D suggest that RNA synthesis is required for the TNF-alpha-induced effect on SMIT mRNA levels. In contrast with the effect of TNF-alpha, hyperosmolarity increases SMIT mRNA levels and myo-inositol accumulation in 3T3-L1 adipocytes. Hyperosmolarity increases SMIT gene expression as evidenced by the inhibition of hyperosmotic induction of SMIT mRNA levels by actinomycin D, and of myo-inositol accumulation by actinomycin D and cycloheximide. TNF-alpha and osmotic stress have previously been shown to activate similar signal transduction pathways in mammalian cells. In 3T3-L1 adipocytes, both TNF-alpha and hyperosmolarity increase mitogen-activated protein kinase kinase pathway activity; however, with the possible exception of c-Jun N-terminal kinase, this pathway does not seem to regulate SMIT mRNA levels or myo-inositol accumulation. TNF-alpha activates nuclear factor kappaB (NF-kappaB) in 3T3-L1 adipocytes but, unlike the effect of TNF-alpha on cultured endothelial cells, NF-kappaB does not seem to contribute to the regulation by TNF-alpha of SMIT gene expression in 3T3-L1 adipocytes. Therefore other signal transduction pathways must be considered in the regulation by TNF-alpha of SMIT mRNA levels and activity. Thus TNF-alpha and hyperosmolarity have opposing effects on SMIT mRNA levels and activity in 3T3-L1 adipocytes. Because myo-inositol in the form of phosphoinositides is an important component of membranes and signal transduction pathways, the regulation of myo-inositol metabolism by TNF-alpha might represent another mechanism by which TNF-alpha regulates adipocyte function.
SUBMITTER: Yorek MA
PROVIDER: S-EPMC1219874 | biostudies-other | 1998 Dec
REPOSITORIES: biostudies-other
ACCESS DATA