Unknown

Dataset Information

0

Analysis of RNA-protein interactions of mouse liver cytochrome P4502A5 mRNA.


ABSTRACT: In our previous studies we have identified a 37/39 kDa, pyrazole-inducible, cytochrome P4502A5 (CYP2A5) mRNA binding protein and provided evidence that it may play a role in the stabilization and processing of the RNA [Geneste, Rafalli and Lang (1996) Biochem. J. 313, 1029-1037; Thulke-Gross, Hergenhahn, Tilloy-Ellul, Lang and Bartsch (1998) Biochem. J. 331, 473-481]. Details of the RNA-protein interactions are, however, not known. In this report we have performed an analysis of the interaction between the CYP2A5 mRNA and the 37/39 kDa protein. With UV-cross linking experiments, using RNA probes corresponding to various parts of the CYP2A5 mRNA, and with antisense oligonucleotides complementary to certain areas of the 3'-untranslated region (3'UTR), we could map the primary binding site to the tip of a 71 nt hair-pin loop at the 3'-UTR. This analysis also showed that the protein may have more than one site of interaction with the RNA and/or that, within the binding region, there could be more than one protein molecule binding to the RNA. Analysis of the probable conformations of the various probes used in the UV cross-linking experiments, in combination with the estimated binding affinities of the protein to the different probes, suggests that important factors in the high-affinity binding are the UAG triplet flanked by GA-rich sequences at the tip of the hair-pin loop, in addition to the conformation of the loop itself. Within the binding region, similarities with known binding sites of heterogeneous nuclear ribonucleoprotein (hnRNP) A1 in other RNA molecules were revealed by sequence alignment analysis. Moreover, competition experiments with an oligoribonucleotide corresponding to a known high-affinity binding site of hnRNP A1, and immunoprecipitation of the UV cross-linked 37/39 kDa complex showed that the protein binding to the CYP2A5 mRNA could be hnRNP A1 or its close analogue. It was also shown that the 37/39 kDa protein binds with less affinity to CYP2A4 mRNA than to CYP2A5 mRNA. This is in accordance with experiments characterizing the binding site, since these two otherwise highly homologous genes are kown to have a three nucleotide difference within the region important for the high binding affinity. Since the response of CYP2A4 to pyrazole is known to be weak, as compared with CYP2A5, this observation provides further evidence for a regulatory role of the 37/39 kDa protein in CYP2A5 mRNA metabolism.

SUBMITTER: Tilloy-Ellul A 

PROVIDER: S-EPMC1220206 | biostudies-other | 1999 May

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC3319039 | biostudies-literature
| S-EPMC3222808 | biostudies-literature
| S-EPMC29619 | biostudies-literature
| S-EPMC4641588 | biostudies-literature
| S-EPMC3375920 | biostudies-literature
| S-EPMC6618095 | biostudies-literature
| S-EPMC4607365 | biostudies-literature
| S-EPMC5715535 | biostudies-literature