Unknown

Dataset Information

0

Identification of Glu-519 as the catalytic nucleophile in beta-mannosidase 2A from Cellulomonas fimi.


ABSTRACT: Incubation of the beta-mannosidase Man2A from Cellulomonas fimi with 2-deoxy-2-fluoro-beta-D-mannosyl fluoride (2FMan beta F) resulted in time-dependent inactivation of the enzyme (inactivation rate constant k(i)=0.57 min(-1), dissociation constant for the inactivator K(i)=0.41 mM) through the accumulation of a covalent 2-deoxy-2-fluoro-alpha-D-mannosyl-beta-mannosidase 2A (2FMan-Man2A) enzyme intermediate, as observed by electrospray ionization mass spectrometry. The stoichiometry of inactivation was 1:1. Removal of excess inactivator and regeneration of active enzyme by transglycosylation of the covalently attached inhibitor to gentiobiose [Glc beta(1-6)Glc] demonstrated that the covalent intermediate was catalytically competent. Comparison by MS of the peptic digests of 2FMan-Man2A with peptic digests of native Man2A revealed a peptide of m/z 1520 that was unique to 2FMan-Man2A, and one of m/z 1036.5 that was unique to a Man2A peptide. Their sequences, determined by collision-induced fragmentation, were CSEFGFQGPPTW and FGFQGPPTW, corresponding to residues 517-528 and 520-528 of Man2A respectively. The difference in mass of 483.5 between the two peptides equals the sum of the masses of the tripeptide CSE plus that of 2-fluoromannose. It was concluded that in 2FMan-Man2A, the 2-fluoromannose esterified to Glu-519 blocks hydrolysis of the Glu-519-Phe-520 peptide bond, and that Glu-519 is the catalytic nucleophile in this enzyme. This residue is conserved in all members of family 2 of the glycosyl hydrolases. This represents the first ever labelling and identification of an active-site nucleophile in a beta-mannosidase.

SUBMITTER: Stoll D 

PROVIDER: S-EPMC1221426 | biostudies-other | 2000 Nov

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4248878 | biostudies-literature
| S-EPMC91384 | biostudies-literature
| S-EPMC1219801 | biostudies-other
| S-EPMC1219852 | biostudies-other
| S-EPMC4780727 | biostudies-literature
| PRJNA37205 | ENA
| S-EPMC5892457 | biostudies-literature
| S-EPMC3982601 | biostudies-literature
| S-EPMC204259 | biostudies-other
| S-EPMC3544764 | biostudies-literature