Snake venom disintegrins: novel dimeric disintegrins and structural diversification by disulphide bond engineering.
Ontology highlight
ABSTRACT: We report the isolation and amino acid sequences of six novel dimeric disintegrins from the venoms of Vipera lebetina obtusa (VLO), V. berus (VB), V. ammodytes (VA), Echis ocellatus (EO) and Echis multisquamatus (EMS). Disintegrins VLO4, VB7, VA6 and EO4 displayed the RGD motif and inhibited the adhesion of K562 cells, expressing the integrin alpha5beta1 to immobilized fibronectin. A second group of dimeric disintegrins (VLO5 and EO5) had MLD and VGD motifs in their subunits and blocked the adhesion of the alpha4beta1 integrin to vascular cell adhesion molecule 1 with high selectivity. On the other hand, disintegrin EMS11 inhibited both alpha5beta1 and alpha4beta1 integrins with almost the same degree of specificity. Comparison of the amino acid sequences of the dimeric disintegrins with those of other disintegrins by multiple-sequence alignment and phylogenetic analysis, in conjunction with current biochemical and genetic data, supports the view that the different disintegrin subfamilies evolved from a common ADAM (a disintegrin and metalloproteinase-like) scaffold and that structural diversification occurred through disulphide bond engineering.
SUBMITTER: Calvete JJ
PROVIDER: S-EPMC1223455 | biostudies-other | 2003 Jun
REPOSITORIES: biostudies-other
ACCESS DATA