Effect of carbonyl cyanide m-chlorophenylhydrazone on respiration and respiration-dependent phosphorylation in Escherichia coli.
Ontology highlight
ABSTRACT: 1. The interference mechanism of carbonyl cyanide m-chlorophenylhydrazone with the respiratory process and with phosphorylation coupled to respiration has been investigated in resting cells of Escherichia coli. 2. Preincubation of the cells with carbonyl cyanide m-chlorophenylhydrazone in the absence of substrate caused strong inhibition of succinate oxidation. The inactivation of the respiratory system proved to be time-dependent and temperature-dependent and could be arrested by adding the substrate. Inhibition of incorporation of (32)P into acid-soluble organic phosphate esters exceeded the inhibition of oxygen uptake. 3. In contrast with succinate, the rate of oxidation of glucose was increased by carbonyl cyanide m-chlorophenylhydrazone. The sensitivity of other substrates to the inhibitor was less than that of succinate. 4. Various observations are described in support of the view that respiratory inhibition induced by carbonyl cyanide m-chlorophenylhydrazone is a result of its interference with ATP synthesis. The capacity of a given substrate to increase intracellular ATP concentration appeared to be directly related to its resistance to inhibition. In cell-free extracts carbonyl cyanide m-chlorophenylhydrazone still suppressed (32)P incorporation but had no effect on respiration. 5. Carbonyl cyanide m-chlorophenylhydrazone-induced stimulation of glucose oxidation and the acceleration of succinate oxidation by ADP or AMP in cells rendered permeable to nucleotides are tentatively interpreted as an indication that a certain part of respiration in E. coli is under phosphate-acceptor-mediated control.
SUBMITTER: Cavari BZ
PROVIDER: S-EPMC1270446 | biostudies-other | 1967 May
REPOSITORIES: biostudies-other
ACCESS DATA