Unknown

Dataset Information

0

Cloning and expression of the human T-type channel Ca(v)3.3: insights into prepulse facilitation.


ABSTRACT: The full-length human Ca(v)3.3 (alpha(1I)) T-type channel was cloned, and found to be longer than previously reported. Comparison of the cDNA sequence to the human genomic sequence indicates the presence of an additional 4-kb exon that adds 214 amino acids to the carboxyl terminus and encodes the 3' untranslated region. The electrophysiological properties of the full-length channel were studied after transient transfection into 293 human embryonic kidney cells using 5 mM Ca(2+) as charge carrier. From a holding potential of -100 mV, step depolarizations elicited inward currents with an apparent threshold of -70 mV, a peak of -30 mV, and reversed at +40 mV. The kinetics of channel activation, inactivation, deactivation, and recovery from inactivation were very similar to those reported previously for rat Ca(v)3.3. Similar voltage-dependent gating and kinetics were found for truncated versions of human Ca(v)3.3, which lack either 118 or 288 of the 490 amino acids that compose the carboxyl terminus. A major difference between these constructs was that the full-length isoform generated twofold more current. These results suggest that sequences in the distal portion of Ca(v)3.3 play a role in channel expression. Studies on the voltage-dependence of activation revealed that a fraction of channels did not gate as low voltage-activated channels, requiring stronger depolarizations to open. A strong depolarizing prepulse (+100 mV, 200 ms) increased the fraction of channels that gated at low voltages. In contrast, human Ca(v)3.3 isoforms with shorter carboxyl termini were less affected by a prepulse. Therefore, Ca(v)3.3 is similar to high voltage-activated Ca(2+) channels in that depolarizing prepulses can regulate their activity, and their carboxy termini play a role in modulating channel activity.

SUBMITTER: Gomora JC 

PROVIDER: S-EPMC1302142 | biostudies-other | 2002 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Cloning and expression of the human T-type channel Ca(v)3.3: insights into prepulse facilitation.

Gomora Juan Carlos JC   Murbartián Janet J   Arias Juan Manuel JM   Lee Jung-Ha JH   Perez-Reyes Edward E  

Biophysical journal 20020701 1


The full-length human Ca(v)3.3 (alpha(1I)) T-type channel was cloned, and found to be longer than previously reported. Comparison of the cDNA sequence to the human genomic sequence indicates the presence of an additional 4-kb exon that adds 214 amino acids to the carboxyl terminus and encodes the 3' untranslated region. The electrophysiological properties of the full-length channel were studied after transient transfection into 293 human embryonic kidney cells using 5 mM Ca(2+) as charge carrier  ...[more]

Similar Datasets

| S-EPMC1449690 | biostudies-literature
| S-EPMC4223327 | biostudies-literature
| S-EPMC3297783 | biostudies-literature
| S-EPMC38619 | biostudies-other
| S-EPMC2890469 | biostudies-literature
| S-EPMC3051872 | biostudies-literature
| S-EPMC6597251 | biostudies-literature
| S-EPMC3143633 | biostudies-literature
| S-EPMC9643818 | biostudies-literature
| S-EPMC4570828 | biostudies-literature