Genetic factors affecting the impact of DNA polymerase delta proofreading activity on mutation avoidance in yeast.
Ontology highlight
ABSTRACT: Base selectivity, proofreading, and postreplication mismatch repair are important for replication fidelity. Because proofreading plays an important role in error correction, we have investigated factors that influence its impact in the yeast Saccharomyces cerevisiae. We have utilized a sensitive mutation detection system based on homonucleotide runs of 4 to 14 bases to examine the impact of DNA polymerase delta proofreading on mutation avoidance. The contribution of DNA polymerase delta proofreading on error avoidance was found to be similar to that of DNA polymerase epsilon proofreading in short homonucleotide runs (A4 and A5) but much greater than the contribution of DNA polymerase epsilon proofreading in longer runs. We have identified an intraprotein interaction affecting mutation prevention that results from mutations in the replication and the proofreading regions, resulting in an antimutator phenotype relative to a proofreading defect. Finally, a diploid strain with a defect in DNA polymerase delta proofreading exhibits a higher mutation rate than a haploid strain. We suggest that in the diploid population of proofreading defective cells there exists a transiently hypermutable fraction that would be inviable if cells were haploids.
SUBMITTER: Tran HT
PROVIDER: S-EPMC1460598 | biostudies-other | 1999 May
REPOSITORIES: biostudies-other
ACCESS DATA