Dexamethasone inhibits TNF-alpha-induced apoptosis and IAP protein downregulation in MCF-7 cells.
Ontology highlight
ABSTRACT: Exposure of human mammary carcinoma cell line MCF-7 to TNF-alpha leads to apoptotic cell death within 24 h. In search for apoptosis-preventing signals, we identified glucocorticoids as potent death-preventing compounds. Ten nM dexamethasone provided a significant protective effect whereas 100 nM dexamethasone roughly blocked 80 - 90% of TNF-alpha-induced apoptosis. Surprisingly, dexamethasone exerted a protective effect even when supplied several hours after TNF-alpha. This points to a powerful inhibition of even advanced apoptotic processes by dexamethasone. To further pinpoint the anti-apoptotic glucocorticoid action, we investigated the expression levels of several members of the inhibitors of apoptosis (IAPs) family of proteins in response to TNF-alpha and dexamethasone. IAP proteins directly block caspase protease activities including caspase-3, caspase-7, and caspase-9. Exposure of MCF-7 cells to TNF caused an extensive downregulation of cIAP1, cIAP2, and XIAP protein levels. The decline of the IAP protein levels temporally paralleled the appearance of apoptotic DNA fragments which started 12 - 14 h following TNF-alpha addition and maximal effects were seen within 24 h. Coincubation of cells with TNF-alpha and dexamethasone potently blocked cIAP1, cIAP2, and XIAP downregulation. TNF-alpha-mediated IAP protein downregulation was not affected by proteasome inhibitors like lactacystin, ALLN or ALLM, whereas it was blocked by the broad-spectrum caspase inhibitor Z-VAD-fmk which also prevented TNF-alpha-induced apoptotic cell death. These data suggest that inhibition of IAP downregulation mediated by a caspase proteolytic activity constitutes the anti-apoptotic action of glucocorticoids in MCF-7 carcinoma cells.
SUBMITTER: Messmer UK
PROVIDER: S-EPMC1572806 | biostudies-other | 2001 Jun
REPOSITORIES: biostudies-other
ACCESS DATA