Identification of a third secondary carrier (DcuC) for anaerobic C4-dicarboxylate transport in Escherichia coli: roles of the three Dcu carriers in uptake and exchange.
Ontology highlight
ABSTRACT: In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are no longer capable of growth by fumarate respiration. DcuC, however, is not required for C4-dicarboxylate uptake in aerobic growth. The dcuC gene encodes a putative protein of 461 amino acid residues with properties typical for secondary procaryotic carriers. DcuC shows sequence similarity to the two major anaerobic C4-dicarboxylate carriers DcuA and DcuB. Mutants producing only DcuA, DcuB, or DcuC were prepared. In the mutants, DcuA, DcuB, and DcuC were each able to operate in the exchange and uptake mode.
SUBMITTER: Zientz E
PROVIDER: S-EPMC178639 | biostudies-other | 1996 Dec
REPOSITORIES: biostudies-other
ACCESS DATA