Genomic organization of GB viruses A and B: two new members of the Flaviviridae associated with GB agent hepatitis.
Ontology highlight
ABSTRACT: The genomes of two positive-strand RNA viruses have recently been cloned from the serum of a GB agent-infected tamarin by using representational difference analysis. The two agent, GB viruses A and B (GBV-A and GBV-B, respectively), have genomes of 9,493 and 9,143 nucleotides, respectively, and single large open reading frames that encode potential polyprotein precursors of 2,972 and 2,864 amino acids, respectively. The genomes of these agents are organized much like those of other pestiviruses and flaviviruses, with genes predicted to encode structural and nonstructural proteins located at the 5' and 3' ends, respectively. Amino acid sequence alignments and subsequent phylogenetic analysis of the RNA-dependent RNA polymerases (RdRps) of GBV-A and GBV-B show that they possess conserved sequence motifs associated with supergroup II RNA polymerases of positive-strand RNA viruses. On the basis of similar analyses, the GBV-A- and GBV-B-encoded helicases show significant identity with the supergroup II helicases of positive-strand RNA viruses. Within the supergroup II RNA polymerases and helicases, GBV-A and GBV-B are most closely related to the hepatitis C virus group. Across their entire open reading frames, the GB agents exhibit 27% amino sequence identity to each other, approximately 28% identity to hepatitis C virus type 1, and approximately 20% identity to either bovine viral diarrhea virus or yellow fever virus. The degree of sequence divergence between GBV-A and GBV-B and other Flaviviridae members demonstrates that the GB agents are representatives of two new genera within the Flaviviridae family.
SUBMITTER: Muerhoff AS
PROVIDER: S-EPMC189418 | biostudies-other | 1995 Sep
REPOSITORIES: biostudies-other
ACCESS DATA