Unknown

Dataset Information

0

Regulation of OX1 orexin/hypocretin receptor-coupling to phospholipase C by Ca2+ influx.


ABSTRACT: BACKGROUND AND PURPOSE: Orexin (OX) receptors induce Ca2+ elevations via both receptor-operated Ca2+ channels (ROCs) and the "conventional" phospholipase C (PLC)-Ca2+ release-store-operated Ca2+ channel (SOC) pathways. In this study we assessed the ability of these different Ca2+ influx pathways to amplify OX1 receptor signalling to PLC in response to stimulation with the physiological ligand orexin-A. EXPERIMENTAL APPROACH: PLC activity was assessed in CHO cells stably expressing human OX1 receptors. KEY RESULTS: Inhibition of total Ca2+ influx by reduction of the extracellular [Ca2+] to 1 microM effectively inhibited the receptor-stimulated PLC activity at low orexin-A concentrations (by 93% at 1 nM), and this effect was gradually reduced by higher orexin-A concentrations. A similar but weaker inhibitory effect (84% at 1 nM) was obtained on depolarization to approximately 0 mV, which disrupts most of the driving force for Ca2+ entry. The inhibitor of the OX1 receptor-activated ROCs, tetraethylammonium chloride (TEA), was somewhat less effective than the reduction in extracellular [Ca2+] at inhibiting PLC activation, probably because it only partially blocks ROCs. The partial inhibitor of both ROCs and SOCs, Mg2+, and the SOC inhibitors, dextromethorphan, SKF-96365 (1-[beta-(3-(4-methoxyphenyl)propoxy)-4-methoxyphenethyl]-1H-imidazole HCL) and 2-APB (2-aminoethoxydiphenyl borate), inhibited PLC activity at low concentrations of orexin-A, but were not as effective as TEA. CONCLUSIONS AND IMPLICATIONS: Both ROCs and SOCs markedly amplify the OX(1) receptor-induced PLC response, but ROCs are more central for this response. These data indicate the crucial role of ROCs in orexin receptor signalling.

SUBMITTER: Johansson L 

PROVIDER: S-EPMC2013853 | biostudies-other | 2007 Jan

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4018553 | biostudies-literature
| S-EPMC3904253 | biostudies-literature
| S-EPMC6454482 | biostudies-literature
| S-EPMC3012206 | biostudies-literature
| S-EPMC4304483 | biostudies-other
| S-EPMC5456073 | biostudies-literature
| S-EPMC6725310 | biostudies-literature
| S-EPMC4290719 | biostudies-literature
| S-EPMC4935841 | biostudies-literature
2024-11-19 | GSE281229 | GEO