Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi.
Ontology highlight
ABSTRACT: We have determined the complete nucleotide sequence of a small circular plasmid from the spirochete Borrelia burgdorferi Ip21, the agent of Lyme disease. The plasmid (cp8.3/Ip21) is 8,303 bp long, has a 76.6% A+T content, and is unstable upon passage of cells in vitro. An analysis of the sequence revealed the presence of two nearly perfect copies of a 184-bp inverted repeat sequence separated by 2,675 bp containing three closely spaced, but nonoverlapping, open reading frames (ORFs). Each inverted repeat ends in sequences that may function as signals for the initiation of transcription and translation of flanking plasmid sequences. A unique oligonucleotide probe based on the repeated sequence showed that the DNA between the repeats is present predominantly in a single orientation. Additional copies of the repeat were not detected elsewhere in the Ip21 genome. An analysis for potential ORFs indicates that the plasmid has nine highly probable protein-coding ORFs and one that is less probable; together, they occupy almost 71% of the nucleotide sequence. Analysis of the deduced amino acid sequences of the ORFs revealed one (ORF-9) with features in common with Borrelia lipoproteins and another (ORF-2) having limited homology with a replication protein, RepC, from a gram-positive plasmid that replicates by a rolling circle (RC) mechanism. Known collectively as RC plasmids, such plasmids require a double-stranded origin at which the Rep protein nicks the DNA to generate a single-stranded replication intermediate. cp8.3/Ip21 has three copies of the heptameric motif characteristically found at a nick site of most RC plasmids. These observations suggest that cp8.3/Ip21 may replicate by an RC mechanism.
SUBMITTER: Dunn JJ
PROVIDER: S-EPMC205412 | biostudies-other | 1994 May
REPOSITORIES: biostudies-other
ACCESS DATA