Unknown

Dataset Information

0

Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP).


ABSTRACT: Plasminogen-related growth factors, a new family of polypeptide growth factors with the basic domain organization and mechanism of activation of the blood proteinase plasminogen, include hepatocyte growth factor/scatter factor (HGF/SF), a potent effector of the growth, movement, and differentiation of epithelia and endothelia, and hepatocyte growth factor-like/macrophage stimulating protein (HGF1/MSP), an effector of macrophage chemotaxis and phagocytosis. Phylogeny of the serine proteinase domains and analysis of intron-exon boundaries and kringle sequences indicate that HGF/SF, HGF1/MSP, plasminogen, and apolipoprotein (a) have evolved from a common ancestral gene that consisted of an N-terminal domain corresponding to plasminogen activation peptide (PAP), 3 copies of the kringle domain, and a serine proteinase domain. Models of the N domains of HGF/SF, HGF1/MSP, and plasminogen, characterized by the presence of 4 conserved Cys residues forming a loop in a loop, have been modeled based on disulfide-bond constraints. There is a distinct pattern of charged and hydrophobic residues in the helix-strand-helix motif proposed for the PAP domain of HGF/SF; these may be important for receptor interaction. Three-dimensional structures of the 4 kringle and the serine proteinase domains of HGF/SF were constructed by comparative modeling using the suite of programs COMPOSER and were energy minimized. Docking of a lysine analogue indicates a putative lysine-binding pocket within kringle 2 (and possibly another in kringle 4). The models suggest a mechanism for the formation of a noncovalent HGF/SF homodimer that may be responsible for the activation of the Met receptor. These data provide evidence for the divergent evolution and structural similarity of plasminogen, HGF/SF, and HGF1/MSP, and highlight a new strategy for growth factor evolution, namely the adaptation of a proteolytic enzyme to a role in receptor activation.

SUBMITTER: Donate LE 

PROVIDER: S-EPMC2142779 | biostudies-other | 1994 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP).

Donate L E LE   Gherardi E E   Srinivasan N N   Sowdhamini R R   Aparicio S S   Blundell T L TL  

Protein science : a publication of the Protein Society 19941201 12


Plasminogen-related growth factors, a new family of polypeptide growth factors with the basic domain organization and mechanism of activation of the blood proteinase plasminogen, include hepatocyte growth factor/scatter factor (HGF/SF), a potent effector of the growth, movement, and differentiation of epithelia and endothelia, and hepatocyte growth factor-like/macrophage stimulating protein (HGF1/MSP), an effector of macrophage chemotaxis and phagocytosis. Phylogeny of the serine proteinase doma  ...[more]

Similar Datasets

| S-EPMC6054100 | biostudies-literature
| S-EPMC1221328 | biostudies-other
| S-EPMC3435317 | biostudies-literature
| S-ECPF-MTAB-762 | biostudies-other
| S-EPMC9249922 | biostudies-literature
| S-EPMC5496502 | biostudies-literature
2012-07-01 | E-MTAB-762 | biostudies-arrayexpress
| S-EPMC2846324 | biostudies-literature
2019-06-14 | GSE129075 | GEO
| S-EPMC1503665 | biostudies-literature